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Abstract

Multi-dimensional Upwind Fluctuation Splitting Scheme with Mesh

Adaption for Hypersonic Viscous Flow

By

William Alfred Wood III

Committee Chairman: Bernard Grossman

Aerospace Engineering

(ABSTRACT)

A multi-dimensional upwind fluctuation splitting scheme is developed and imple-

mented tbr two-dimensional and axisymmetric tbrmulations of the Navier-Stokes equa-

tions on unstructured meshes. Key teatures of the scheme are the compact stencil,

full upwinding, and non-linear discretization which allow for second-order accuracy

with entbrced positivity. Throughout, the fluctuation splitting scheme is compared

to a current state-of-the-art finite volume approach, a second-order, dual mesh up-

wind flux difference splitting scheme (DMFDSFV), and is shown to produce more

accurate results using fewer computer resources tbr a wide range of test cases. The

scalar test cases include advected shear, circular advection, non-linear advection with

coalescing shock and expansion fans, and advection-diffusion. For all scalar cases the

fluctuation splitting scheme is more accurate, and the primary mechanism for the

improved fluctuation splitting pertbrmance is shown to be the reduced production of

artificial dissipation relative to DMFDSFV. The most significant scalar result is tbr
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combined advection-difthsion, where the present fluctuation splitting scheme is able to

resolve the physical dissipation from the artificial dissipation on a much coarser mesh

than DMFDSFV is able to, allowing order-of-magnitude reductions in solution time.

Among the inviscid test cases the converging supersonic streams problem is notable in

that the fluctuation splitting scheme exhibits superconvergent third-order spatial ac-

curacy. For the inviscid cases of a supersonic diamond airtbil, supersonic slender cone,

and incompressible circular bump the fluctuation splitting drag coefficient errors are

typically half the DMFDSFV drag errors. However, for the incompressible inviscid

sphere the fluctuation splitting drag error is larger than tbr DMFDSFV. A Blasius

flat plate viscous validation case reveals a more accurate v-velocity profile tbr fluctu-

ation splitting, and the reduced artificial dissipation production is shown relative to

DMFDSFV. Remarkably the fluctuation splitting scheme shows grid converged skin

friction coefficients with only five points in the boundary layer tbr this case. A viscous

Mach 17.6 (pertect gas) cylinder case demonstrates solution monotonicity and heat

transfer capability with the fluctuation splitting scheme. While fluctuation splitting

is recommended over DMFDSFV, the difference in pertbrmance between the schemes

is not so great as to obsolete DMFDSFV. The second half of the dissertation develops

a local, compact, anisotropic unstructured mesh adaption scheme in conjunction with

the multi-dimensional upwind solver, exhibiting a characteristic alignment behavior

tbr scalar problems. This alignment behavior stands in contrast to the curvature

clustering nature of the local, anisotropic unstructured adaption strategy based upon

a posteriori error estimation that is used tbr comparison. The characteristic align-

ment is most pronounced tbr linear advection, with reduced improvement seen tbr

the more complex non-linear advection and advection-difthsion cases. The adaption

strategy is extended to the two-dimensional and axisymmetric Navier-Stokes equa-

tions of motion through the concept of fluctuation minimization. The system test

case tbr the adaption strategy is a sting mounted capsule at Math-10 wind tunnel

conditions, considered in both two-dimensional and axisymmetric configurations. For

this complex flowfield the adaption results are disappointing since feature alignment

does not emerge from the local operations. Aggressive adaption is shown to result

in a loss of robustness tbr the solver, particularly in the bow shock/stagnation point
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interaction region. Reducing the adaption strength maintains solution robustness but

fails to produce significant improvement in the surface heat transthr predictions.
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Chapter 1

Introduction

1.1 Objective

The present dissertation seeks to develop a next-generation numerical aerothermody-

namic predictive capability. High-fidelity flowfield solutions are sought with increased

accuracy and reduced analysis time, especially with respect to configuration changes.

This is an etibrt to push the state of the art tbr aerothermodynamie analysis capability

closer to being a usable tool for vehicle designers.

Specifically, the multi-dimensional upwinding concepts of Sidilkover[1, 2, 3] as

applied to the Euler equations of inviscid, perfect gas flows are incorporated into a

consistent treatment of viscous and heating terms to solve the Navier-Stokes equa-

tions of gas dynamics. A detailed analysis of the base algorithm is perfbrmed and

applications to several validation cases are conducted. Also, aggressive unstructured

mesh-adaption strategies are investigated in conjunction with the fuctuation splitting

scheme.

1.2 Motivation

Current proposals for thture United States access-to-space systems incorporate reus-

able trans-atmospheric flight vehicles, performing a role similar to the space shuttle

orbiter, seeking to minimize recurring costs. For elSeient design and operation of these
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vehicles aerothermodynamic performance predictions are required to high accuracy

and in a timely fashion.

The current computational capability to provide these aerothermodynamic per-

formance predictions for complex vehicles is severely limited by total solution times,

which include both domain discretization and flowfield evolution, measured in months.

In order for high-fidelity aerothermodynamie predictive tools to play an active role

in the design phase a leap in responsiveness must be made over the current state of

the art methods, represented by dimensionally-split approximate Riemann solvers.

An eft?ctive numerical aerothermodynarnic predictive tool must be able to provide

rapid analysis of vehicle aerodynamics and control surface eft_ctiveness. To do so

ftowfield features, such as embedded shocks, shear layers, and boundary layers, must

be accurately modeled and solution domains must be easily generated tbr complex

shapes, allowing rapid re-calculation with respect to geometry changes.

The emphasis in aerothermodynamics on heat transf?r and high-speed flows pro-

vides additional challenges with regard to the accurate resolution of boundary layers,

loss of accuracy with highly-stretched meshes, and convergence slowdowns associated

with a disparity in information speeds between nearly stagnated boundary layer flow

and hypersonic shock layers.

To make the next generation of computational aerothermodynamic predictive tools

responsive to the design phase a truly multi-dimensional, robust Navier-Stokes solver

based on general unstructured domains is required. Advanced, aggressive conver-

gence acceleration methods and the exploitation of distributed or massively parallel

architectures are mandatory.

1.3 Background

1.3.1 Fluid Dynamics Algorithms

The twin goals of improving both accuracy and efficiency have long been objectives of

the computational fluid dynamics developers. Accuracy is typically addressed through

the spatial discretization, with the Van Leer 'Ultimate' series of papers[4, 5] being a
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driving tbrce throughout the 1970's. In the domain of hypersonic applications, effi-

ciency has been improved through the temporal diseretization, with MaeCormack's

work standing out on explicit predictor/corrector[6], implicit line Gauss-Seidel[7, 8],

and approximate factorization schemes[9], along with a notable extension by Can-

dler to the LU-SGS scheme[10]. Several industrial solvers, such as GASP[Ill, have

emerged from this finite volume legacy, such as the suceessthl CFL3D code[121.

In his landmark paper, Roe[13], building on the work of Godunov[14], introduced

an upwind, approximate-Riemann-problem solution technique tbr the one-dimensional

Euler equations. The Roe scheme has been extended on structured meshes to multiple

dimensions by decomposing the domain into locally one-dimensional problems aligned

with the computational coordinates. Viscous terms have been incorporated and in a

decade's time the structured Roe scheme 1 tbr Navier-Stokes equations set the standard

tbr continuum aerothermodynamics[15, 16, 17, 18].

Unstructured schemes have since been developed, seeking both much greater flex-

ibility tbr complex geometries and a reduction in preferential solution directions

aligned with computational coordinates. Notable contributions tbr the unstructured

Roe schemes have been made by Barth[19, 20, 21, 22] and Whitaker[23, 24]. These

approaches, however, still rely upon a locally one-dimensional, dimensionally-split

algorithm at cell faces.

A different tack has been taken by Fey[25, 26], who has advocated the method of

transport tbr a true multi-dimensional treatment of the Euler equations. This method

is more an extension of flux vector splitting concepts, an approach known to be more

dissipative than flux difference splitting[17].

The advent of multi-dimensional linear advection schemes, termed fluctuation

splitting[27, 28, 29, 30, 31, 32], induced Roe to revisit his one-dimensional scheme.

The fluctuation splitting tbrmulation is based on an unstructured triangulation and

is local to each cell, suitable tbr application on massively parallel computers. A

two-dimensional analog to the Roe scheme tbr the Euler equations has been devel-

oped based on characteristic wave decompositions[33, 34, 35, 36, 37, 38, 39, 40, 41].

Untbrtunately, these wave decomposition schemes have been of limited robustness

1Includes extensions of the base Roe scheme to higher-order accurate discretizations.
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and have not reached their full potential. Applications have also been made to the

shallow-water equations[42].

Taking the wave decomposition idea to the extreme, some authors have applied

fluctuation splitting to Boltzmann schemes tbr the Euler equations[43, 44, 45, 46].

These gas kinetic schemes are very expensive to run and show very modest improve-

ments over dimensionally-split finite volume[47].

Diffusion terms have been incorporated into scalar fluctuation splitting schemes[21,

48] and viscous terms have been added to the wave-decomposition models to solve

Navier-Stokes problems[49, 50, 51, 52]. While the Galerkin approach to viscous terms

appears compatible with fluctuation splitting fbr convective terms, these schemes suf-

fer from a lack of robustness. Carette[51] states, _However, this scheme is not sat-

isfactory at present in terms of robustness and convergence, and improvements in

this respect is still subject [s/c] of current research." Even fbr the classical flat plate

boundary layer problem Tomaich[50] reports, '_'...the agreement with the Blasius

solution is rather poor."

Sidilkover, who along with Roe established a strong link between fluctuation split-

ting and upwind flux difference splitting finite volume[3], has proposed an alternative

multi-dimensional treatment of the Euler system[i, 2]. Rather than pertbrming a

wave decomposition to decouple the Euler equations, Sidilkover employs fluctuation

splitting to treat the system of equations as a whole unit. In doing so he has been

able to apply efficient multigrid[53, 54, 55] solution strategies to shock reflection and

channel flow problems. Advantages of Sidilkover's method fbr the Euler equations in-

clude: arbitrary triangulations, stability of Gauss-Seidel relaxation on high resolution

discretization, compact stencil, second-order accuracy, and rotationally invariant ar-

tificial dissipation. Among these, Sidilkover[55] claims, "The fundamental advantage

of this approach is that it leads to a scheme that combines high-resolution and good

stability properties."

Sidilkover's fluctuation splitting scheme fbr the Euler equations has the promise

to satist) many of the cutting-edge aerodynamic requirements. It provides a truly

multi-dimensional treatment of the governing system of equations in an unstructured,
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compact, high-order algorithm suitable to distributed and massively parallel compu-

tation. Being stable with respect to Gauss-Seidel relaxation, as opposed to Runge-

Kutta[561 marching, opens the possibility of greatly improved multigrid convergence

rates. Robustness appears to be improved relative to the wave decomposition models.

What is lacking from the scheme to be an aerothermodynamic tool are the exten-

sion to the Navier-Stokes equations, rigorous evaluation of robustness and accuracy

relative to finite volume schemes on complex geometries, analysis of the ett?ct of grid

stretching, and critical determination of the accuracy and efficiency tbr heat transfer

and skin friction calculations.

1.3.2 Mesh Adaption Strategies

Solution adaptive remeshing techniques have been utilized with some success tbr hy-

personic flows on structured domains. A simple, effective approach developed by

Gnoflb[5?] utilizes a spring analogy energy minimization to align the bow shock and

cluster to the boundary layer. This approach works very well tbr entry tbrebodies, tbr

which it was developed, but is more difficult to apply to complex vehicle shapes. The

method also is unresponsive to embedded shocks or other shock-layer flow thatures.

Harvey[58, 59, 60] has developed a mesh adaption technique that is sensitive to

shock-layer t_atures to obtain parabolized Navier-Stokes solutions over simple config-

urations, e.g. cones, using a spring analogy based on Gnoftb's work. Untbrtunately,

defining relative clustering strengths tbr various flow features proved difficult, and a

damaging lack of robustness is shown for three-dimensional leeside flowfields[59].

Mesh adaption on unstructured domains ofthrs a significant benefit over structured

mesh adaption the ability to insert and delete nodes. Much of the research in this

area has gone into global remeshing using isotropic cells[61, 62, 63, 64, 65, 66, 67].

Grids composed of (nearly) isotropic cells quickly become prohibitively large tbr hy-

personic applications, where the capture of essentially one-dimensional flow thatures,

such as shocks, results in refinement in all three dimensions. These methods typically

employ gradient clustering, using a second derivative check on some or all of the de-

pendent variables to define clustering strengths. This sort of clustering is intended
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Figure 1.1: Pictorial of _1deal" mesh tbr shock discontinuity (left) and mesh resulting

from gradient based clustering (right).

to reduce the interpolation error in a piecewise-linear data representation[68, 69], but

is not necessarily driven by the flow physics, and can lead to excessive clustering or

conflicting requirements in certain regions, such as a bow shock or stagnation point.

Figure 1.1 presents an illustrative pictorial based on the results of Ait-Ali-Yahia[70]

st al., where 18 cells were driven into the bow shock by gradient based clustering. A

shock is pictured on the left side of the figure with an ideal mesh tbr a three-point

stencil. On the right side is a mesh typically produced by gradient-based cluster-

ing, which gathers more points in the vicinity of the discontinuity without providing

sharper resolution.

More recently, impressive results using anisotropic elements have been reported

by Habashi[71, 72, 73, 74, 75, 76] et el. With that approach, all grid adaptions

are local operations, as opposed to global remeshings. Highly-stretched elements are

obtained, achieved by equating the interpolation error along each edge, again using

a spring analogy minimization. The clustering is still driven by second derivatives in

the solution.

Roe[32, 77] has applied the concept of perfbrming global mesh adaption via lo-

cal node movements to a scalar advection problem using fluctuation splitting. His

analysis reveals that a characteristic mesh results, with far fewer points required than

gradient based clustering would imply. His method is based on the minimization of an

objective function formed by taking derivatives of the fluctuation splitting scheme. A

ditt_rentiable high-resolution linear scheme, which cannot be monotonic[56], is chosen.
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For a complex flowfield or tbr systems of equations it may not be possible to achieve

a perfectly-aligned characteristic mesh, in which case the non-monotonic property

would most likely be detrimental or even fatal to the solution. It is not clear how

to extend the differentiability requirement to a high-resolution, non-linear monotonic

scheme.

Another attempt at mesh alignment has been perfbrmed by Tr_panier[78] et al.

While their scheme is unresponsive to characteristic lines, a wave decomposition model

is used with an inviscid cell-centered finite volume solver to produce shock alignment

of unstructured isotropic cells. Less success was demonstrated tbr shear alignment.

One drawback of the method is the need to explicitly detect and classit?- flow features,

which could hinder the extension to three dimensions. Similarly, Parikh[79] et al. use

a wave decomposition in conjunction with a cell-centered finite volume solver to drive

edge alignment, but with automated general feature detection. Untbrtunately, their

approach was able to provide only extremely modest benefits, in part because there

was no mechanism tbr providing cell stretching.

1.4 Course of Action

A systematic approach to developing new methods is pursued. Current leading-edge

technology is embraced and developed into a complete gas dynamics solver, applicable

to reentry vehicles across their speed range. Throughout, the scientific method is

tbllowed, where new schemes are critically evaluated against the current state of the

art.

One-dimensional scalar advection is considered first, where the common ancestry

of the upwind finite volume and fluctuation splitting paradigms is presented. Exten-

sion to the incorporation of dittusive terms is presented, tbllowed by the treatment

of systems, tbr both the Euler and Navier-Stokes equations. The chapter culminates

with the current state of the art in dimensionally-split schemes. Fluctuation splitting

provides an identical discretization in one dimension.

Two-dimensional scalar advection on unstructured domains is addressed next. The

methodology fbr applying the dimensionally-split concepts in multiple dimensions is
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shown. The different approach of fluctuation splitting is highlighted, providing a truly

multi-dimensional treatment. A critical comparison between the upwind finite volume

and fluctuation splitting schemes tbr scalar equations is perfbrmed. The extension

to diffusive problems is developed, with emphasis placed on consistent incorporation

into the fluctuation splitting framework while still maintaining fbrmal second-order

accuracy.

Novel concepts for mesh adaption are developed analytically for two-dimensional

scalar problems, based on the physics of the solution rather than gradient-based

clustering. Emphasis is placed on concepts that can be extended to systems. Demon-

strations for simple basic problems and more challenging advection-diffusion problems

are performed.

Systems in two dimensions are formulated for the Navier-Stokes equations, rep-

resenting the crux of the development of the fluctuation splitting concepts. The

treatment follows the lead of Sidilkover in treating the system as a cohesive unit,

in contrast to the wave-model simplifications of Roe and Deconinck. Specialization

to axisymmetric equations of fluid motion provide useN1 applications and consistent

treatment of source terms.

The mesh adaption strategies developed fbr scalar equations are refbrmulated tbr

the fluid dynamics systems. The resolution of flowfield features is addressed, along

with robustness and convergence of the adaption process. An automatic refinement

procedure is sought whereby the solution is converged uniformly with mesh density.

A critical aerothermodynamic evaluation of the fluctuation splitting algorithm and

mesh adaption strategies are performed using the primary case of an entry capsule

at Mach-10 wind tunnel conditions, tbr which prior experimental and computational

data exists.



Chapter 2

One-Dimensional Analysis

The current state of the art ibr solving the compressible Navier-Stokes equations,

namely upwind flux-difference-split finite volume schemes, is developed on non-uni-

fbrm meshes in one spatial dimension. Upwind flux difference splitting, in particular

the Roe scheme[13, 80], is considered the most accurate scheme fbr compressible

Navier-Stokes applications[17, 181, primarily because of the low levels of artificial

dissipation introduced through the matrix dissipation model. The particular finite

volume scheme considered in this dissertation can be described as node-based, median-

dual mesh upwind Roe flux difthrence splitting finite volume with limited multi-di-

mensional reconstruction, and will be abbreviated as DMFDSFV, fbr dual mesh flux

diflhrenee splitting finite volume, throughout.

The sections in this chapter progress from scalar advection to diffusion and then

to combined advection-diffusion. Treatment of scalar equations is tbllowed by the

Euler and Navier-Stokes systems of equations. The fluctuation splitting approach is

developed in parallel with the DMFDSFV analysis, and is shown to result in identical

discretizations in one dimension.

This chapter has a threetbld purpose: to introduce DMFDSFV and fluctuation

splitting basics, to develop the state of the art tbr the locally one-dimensional approx-

imate Riemann solver used in the finite volume algorithms, and to serve as a prelude

tbr the multi-dimensional analyses, where fluctuation splitting oflhrs new capability

over the DMFDSFV extensions.
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Figure 2.1: One-dimensional finite volume domain.
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2.1 Domain

In one dimension the domain considered is a discretization of the z-axis, either with

uniform or non-uniform spacing between grid nodes, which are indexed by i. Depen-

dent variables are stored at the nodes.

In the node-based finite volume context a median-dual control volume is con-

structed about each node by defining a cell face half\ray between adjacent nodes.

This convention is depicted in Figure 2.1, with the cell faces referred to as the +1

points. In the illustrative case of Figure 2.1, the i + 1 node is a boundary point, and

1
the corresponding cell extends only from i + 7 to i + 1. The generalized volume of

the median-dual cell is formed as z. 1 - z 1 for interior nodes or zi+l - _+7Z- 1 for
z+7 _-7

the boundary point shown in Figure 2.1. If the solution at the boundary nodes is

specified, then there are two fewer interior finite volumes to solve than the number

of nodes. If the boundary nodes are updated by the interior scheme, then there is

a one-to-one correspondence between the nodes and control volumes, plus two addi-

tional numerical boundary conditions, which may be implemented with ghost nodes

(i + 2 in Figure 2.1) or specified boundary fluxes. If the ghost node is used, it can be

located co-incident with the physical boundary node, and does not need to have an

associated control volume. A ghost node co-located with the physical boundary node,
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Figure 2.2: One-dimensional fluctuation splitting domain.

without an associated control volume extends more easily to multiple dimensions with

unstructured grids than would a tbrmulation based upon physically locating the ghost

node.

Notice that tbr the nodal distribution depicted, which has non-uniform spac-

ing, the cell centroids, denoted by x in Figure 2.1, do not coincide with the nodes.

Barth[22] states that nodal storage in this case, rethrred to as mass lumping in a

finite element context, only alters the time accuracy of finite volume schemes, and

not the steady state solutions. In the present dissertation unsteady problems will

employ unitbrm grids, though stationary problems are free to use non-unifbrm node

distributions. 1

Notice also the piecewise-linear representation of data in the finite volume context.

Discontinuous jumps in the dependent data are allowed at cell faces.

Figure 2.2 depicts the discretization of the domain tbr the fluctuation splitting

approach. The data is now continuous and piecewise linear over elements defined

by the nodes. The centroids of the fluctuation splitting elements are at the same

locations as the faces of the finite volume cells. No special definition of a boundary

1The use of uniform meshes to avoid degradation of time accuracy due to mass lumping is done for
convenience. It is possible to compute cell centroids and use that location in calculations involving
cell distances. Conversely, a cell-centered, rather than node based, data storage structure could be
adopted for the finite volume diseretization.
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cell is required. The length of an element is,

_i,i+l = 2;i+1 -- Xi = /--_i2g (2.1)

There are one f>wer elements than nodes, and each element is associated with two

nodes. Correspondingly, each interior node is associated with two elements, while

each boundary node is associated with only one element.

The data structure tbr fluctuation splitting shown in Figure 2.2 resembles a cell-

centered finite volume layout, with a key dift>rence that cell-centered finite volume

stores the solution at cell centers, as opposed to at the nodes tbr fluctuation splitting.

Additionally, it is emphasized that the fluctuation splitting data is C-0 continuous

whereas cell-centered finite volume would have discontinuous jumps in the data at

the cell interfaces.

2.2 Scalar Advection

A hyperbolic conservation law takes the tbrm,

Ut+V.F =0 (2.2)

where U is the vector of conserved variables and F is the flux 2 of these variables.

Following Godunov[14], Eqn. 2.2 can be evaluated in an integral sense,

/_Utd_ = -£ V "l_d_ (2.3)

If the control volume, _2, is fixed in time, then,

_Ut dt_ = Sf,17Jt (2.4)

where the over-bar indicates a cell-average value. Using the divergence theorem the

flux term can be evaluated as,

£V-Fd_ = J; F • _ dF (2.5)

2The flux function 1_ is a function of the dependent variables U, F = F(U). For some of the

scalar cases/7 will also be a function of the independent variables, _f =/_(u, x, y). In such cases the

flux will be in a variables-separable form, F = A(x, y)u.
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where fi is the outward unit normal to the control volume boundary, F.

The one-dimensional scalar advection problem is obtained from Eqn. 2.2 as,

_ + Fx = 0 (2.6)

which can be written fbr a control cell as,

S_tt = -/" Y_ d_ = F_<t.t /a_ - face
Ja

(2.7)

2.2.1 Linear Advection

Linear adveetion is obtained from Eqn. 2.6 by choosing F = Au. The advection speed,

A, is taken to be constant.

DMFDSFV

Equation 2.7 is expressed tbr the finite volume about node i with mass lumping to

the node as,

&_ = f__l - F_+I= L-_ - L+_= R_ (2.8)

where the numerical flux, f, is a difference expression approximating the exact flux

function, F. Choosing,
F i -_ Vi+ 1

f- 1 -- (2.9)
_+7 2

results in a second-order central difference scheme,

R_ = -O_F (2.10)

The first-order upwind CIR[81] scheme is obtained by the choice,

A-+-IAI .X I),1
_' 1 _ (2.11)z+7 -- 2 Hi q- __ Ui+I

_ /7/q-/7/+1 lal_ (2.12)
2 2

giving,

(2.13)
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The first-order upwind is then seen to be the same as a central distribution plus an

artificial dissipation term,

qSu = _6_n (2.14)

Second-order upwind is constructed tbllowing the MUSCL concept of Van Leer[5],

where a linear reconstruction is performed on each finite volume. The numerical flux

of Eqn. 2.11 is modified to be,

A+IAI -
k+¢ - 2 _" + -_" (2.15)

where UL is the reconstructed conserved variable on the left side of the cell face and

UR is the reconstructed variable on the right side of the cell face. Following Barth[22],

a limited reconstruction is performed on each cell as,

(2.16)

The gradient is evaluated as a central ditIhrence,

(_t)i -- @a (2.17)
Si

The limiter thnction, _, is employed to provide monotonicity of the solution, based

upon positivity arguments. The limiter takes the tbrm,

where,
_ti± 1 -- U i -_

P -- 2 ' q=(Vu)i'Ki±½

The more restrictive of the + choices is used tbr I). Some popular limiters are pre-

sented in appendix A.

The discrete numerical flux (Eqn. 2.15) expands to,

f,_½ _ A+IAI2 tti q- /_i (}'itt Jr- T tti+l -- @'i+1_ _i+ltt) (2.18)

-- Fi Ur-2/_i+lIAI/,,,_+2 _ (_d_(F+IAI,4- _d,--,(F-I,_l_))
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leading to,

]_i = -SiF + _u + ]_2u

where the second-order correction is,

/_2u - 4 S--__0/-I(F+tAlu)- _6_(r-lal_

The residual (Eqn. 2.19) can be rearranged as,

(2.19)

(2.20)

1 rg _)i-1 r7 //g /_i÷1 /_i_1_

R_ = -a_F-g L__,,_--____2- 2_Y__,+_._ \ i,i+l-'_---di+l gi--l'i_i--l/ j_i

+ 2_F_+,- _,_+_s--7+,,_+2j+ ¢_u (2.21)

where the artificial dissipation is now,

+ gi-z'i_i-1 + i'i+1_--1_i+1/ Ui -- _-/' (gi,i+l -- gi-l,i) tti+l

,/ @i+1 l

- <_+,s--7+_,+_j (2.22)

On a unitbrm grid and without limiting, the second-order residual (Eqn. 2.21)

reduces to a low-truncation-error central difference minus tburth-order dissipation,

1
(--fi--2 _- 6Fi--1 -- 6/g7,i÷1 -_ Yi÷2) _- ]-_ (--'?-ti--2 _- 4ui_, - 6ui + 4ui+, - ui+2)R_ = g

(2.2a)

Fluctuation splitting

In the fluctuation splitting framework Eqn. 2.7 is evaluated over each domain element,

without recourse to the divergence theorem. The element fluctuation is defined as,

Jn
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Assuming piecewise linear data, the fluctuation tbr the cell bounded by zi and zi+l

is evaluated as,

x_+_ AAiu _
Oi,i+l = --A tt x d_ = -gi,i+l Aix AiF (2.25)

"" Xi

The elemental update, the LHS of Eqn. 2.24, is formed as,

gi,i+l

- 2 (_i, + _+1_)= _i,_+1 (2.26)

Partitioning the fluctuation into halves and distributing equally to the nodes yields

the basic non-upwind elemental update tbrmula,

gi,i+l _)i,i+l _i i+1 _)i,i+l

• _,.,_+1_ - (2.27)2 _,- _ ' j

Assembling all the elemental contributions to the nodal updates, it is clear each

interior node will receive fluctuation signals from the elements adjacent to the lef_

and right. The nodal update is tbrmed as the sum of these fluctuation contributions,

?tit -4- _l, it
gi-l,i -_-_i,i+l Oi-l,i __ ¢i,i+1 (2.28)

= 2 Ui_ = SiUi_-- 2

or,

SiUi t = ¢i-l,i d- _)i,i+l (2.29)
2

A popular nomenclature convention tbr Eqns. 2.27 and 2.29 is to describe the elemen-

tal distribution tbrmula as,

¢i,i+l _i,i+l -4-COE (2.30)
SiUit _ 2 Jr- COE, Si+l_li+lt _ 2

where COE indicates a sum of similar contributions from other elements joining at

that node.

Expanding the nodal update tbrmula (Eqn. 2.29),

-ViF - AiF
Siuit = 2 = -SiF (2.31)

which is the identical central discretization as tbr DMFDSFV (Eqn. 2.10).
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An upwind scheme can be constructed by introducing artificial dissipation in order

to redistribute the fluctuation,

¢I = sign(A)0E (2.32)

The upwind distribution tbrmula becomes,

Si_lit _ CEt_-6_r=-- -4- COE = O(ri,id_l\] -- sign(A)) -_- COE
2 2

OE -- ¢_ 0i,id-1 (1 -4-sign(,_))
Si+lu_+l_ + COE = + COE

2 2
(2.33)

Using the fluctuation definition (Eqn. 2.25) the nodal update is obtained as,

(A-+-IAI)Vi I._1
S_u_ = - a_F + ""5?u (2.34)

2 2 2

which is identical to the first-order upwind discretization tbr DMFDSFV (Eqn. 2.13).

A second-order scheme is easily obtained by adding the exact same DMFDSFV

correction, R2u (Eqn. 2.20), to the nodal update tbrmula (Eqn. 2.34).

2.2.2 Non-linear Advection

Non-linear advection is obtained from Eqn. 2.6 by choosing the flux to be,

_2
/7 zm

2

Define the Jacobian of the flux,

(2.35)

A z/Tu z 7t (2.36)

so that,
OF 0/70tt

G - - - GUx = Aux
Ox Ou Ox

Equation 2.6 may be rearranged in non-conservation tbrm,

ut + Fx = ut + Aux = O (2.37)
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DMFDSFV

Following Roe[13], the analog to the numerical flux of Eqn. 2.15 becomes,

fi+l -- 2 UL + 2 UR

F +F. I I __1
-- 2 2 (UR -- _L) (2.3s)

where A is the conservative linearization of the flux Jacobian, which in this case is,

~ UL + UR (2.39)
Ai+l --

A first-order upwind scheme is obtained using piecewise-constant data, _/_L = Ui, and

ua = ui+l. A second-order upwind scheme is constructed using the linear reconstruc-

tion of Eqn. 2.16. The first-order residual may be written explicitly as,

Fluctuation splitting

The elemental fluctuation is

(2.41)

Assuming piecewise-linear data Eqn. 2.41 becomes,

- Ai_. = -AiFCE = Ai+½ (2.42)

An upwind scheme is created by introducing the artificial dissipation,

(2.43)

The distribution tbrmula remains,

OE -- OE
Si?_it 4-- 2

CE -_- ¢IE
Si+lUi+Lt 2

-- + COE

-- + COE (2.44)
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The nodal update is,

SiTti t
Oi-l,i -- O_-l,i _i,i+l -- 0_,i+1

= +
2 2

- Viu - -- + --Aiu
2 2 2 2

IAli_l IAIi+I
= -5iF Viu+ _ '_Aiu

2 2

This is the identical update formula as for DMFDSFV (Eqn. 2.40).

(2.45)

Expansion shocks

The discretization of Roe's scheme allows for non-physical expansion shocks that

violate the entropy condition. Harten and Hyman[82] proposed a commonly used

method for perturbing the wavespeeds such that entropy is satisfied and expansion

shocks are prevented. The correction is applied to any wavespeed that can go to zero

at a sonic point and takes the tbrm,

½ --+c

where the perturbation scale is,

if IAli+ z

if' IAli+½ < c
(2.46)

C = [IlaX [0, (_i+1- Ai) , (Ai+ 1 -- _i+1)] (2.47)

2.3 Scalar Advection-Diffusion

The governing equation fbr scalar advection-diff'usion problems in one-dimension is,

ut + F:_ = (#Ux)x (2.48)

2.3.1 Heat Equation

Modeling of the viscous RHS in Eqn. 2.48 begins with a consideration of the heat

equation,

ut = (pUx)x (2.49)
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In the finite volume framework one approach to discretizing the viscous term is to

construct a viscous flux, so that the nodal update becomes,

-- --_/_X " 1s_ = (,_x)i+_ - (,)___ (2.50)

Ai_ _

Siui_ _ p. I+COE
&,i+l _+2

Aiu _

Si+lUi+lt t _i,i+l Pi+½ _- COE
(2.55)

Integrating by parts,

(, _/ _ 1i+1 ./is_ = _,. _J_i-1- (_,_)x(,_)_ (2.53)

The shape function is the linear tent thnetion, and is equal to zero at Xi±l, eliminating

the first RHS term of Eqn. 2.53. The remaining term is integrated over each element

connecting at node i,
p

= - _ L _' _ (2.54)S_ui_
JEE

The dependent variable and shape function gradients are constant over the element,

and taking the element-average viscosity coefficient the elemental contributions are,

x_ = £ _(,;_)_ _ (2.52)

where,
--+ --e

(Vlt)i-t- (Vtt)i+l (2.51)
(/._UX) i__ ½ --" 1= "_+_ 2

with the gradients X_u defined by Eqn. 2.17. This approach leads to a five-point

stencil.

An alternative is to use a finite element discretization, which results in a three-

point stencil. This approach is adopted both by Barth[22] and Anderson and Bon-

haus[83] in a finite volume context and by Tomaich[50] in a fluctuation splitting

context.

A Galerkin finite element diseretization, using mass lumping to the nodes, is

constructed on the fluctuation splitting domain by integrating with the aid of the

finite element linear shape tunction v (see Biekfbrd §4.2.2[84] or Bathe §7.2[85]),
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The nodal update is written,

Aiu _ Viu _
_ 1

Si_tit _i,i+l _+:J _i-l,-i _ti-1

2.3.2 Combined Advection and Diffusion

The combined eiI_cts of advection and diffusion in the governing equation (Eqn. 2.48)

are treated by discretizing the advection terms as discussed in section 2.2 and adding

the diseretization of the diffusion terms of section 2.3.1. Recall, however, that the

upwind advection discretization includes artificial dissipation, which can mask the

physical dissipation.

Perhaps the best approach tbr solving discretized advection-diithsion problems, as

suggested by Barth[21], is to include the maximum of either the physical diffusion

term, as defined by Eqn. 2.51 or Eqn. 2.55, or the artificial dissipation, the second

term of Eqn. 2.38 tbr DMFDSFV or _ in Eqn. 2.43 for fluctuation splitting.

2.4 Systems

A hyperbolic conservation law tbr systems (Eqn. 2.2) is written in one dimension as,

Ut + Fx = 0 (2.57)

A decomposition of the flux function is sought such that the system can be expressed

as a decoupled set of advection-dittusion equations.

2.4.1 Euler Equations

The one-dimensional Euler equations[86] for perfect gases, suitable tbr simulating

non-reacting, low-Knudson-number shock-tube flows, are written as a conservation

law (Eqn. 2.57) with,

U= pu

pE
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F = pu 2 + P

pull

(2.s9)

The Euler equations have a tbrm similar to the non-linear advection problem.

The total energy and enthalpy are obtained from the internal energy and enthalpy,

_2 _2
E =e+-- H=h+--

2 2

The energy and enthalpy are related as,

h =e+ p
P

The perfect gas equation of state is,

P = p_(_- 1) (2.60)

DMFDSFV

The numerical flux remains as in Eqn. 2.38,

F, + S_ IAL1 (u_- u,) (2.61)
f_+l - 2 2

Roe[13, 80] constructs the conservative linearization for the Inli+l matrix by intro-

ducing the parameter vector,

/1/Z=v/5 u

1
The i + 7 state is taken to be a linear average of the parameter vector,

(2.62)

Z L -- Z R

Zi+l - 2

Taking the velocity and total enthalpy from the parameter vector,

Z1 Zl
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and defining the Roe-density,

the Jacobian matrix is formed as,

The eigenvalues are,

/5 = _ (2.64)

Inl = XI -INZ-* (2.65)

A =diag(u, u+a, u- a)

The right eigenvectors are,

(2.66)

X (1) = u X (2) = u + a X (a) = _- a (2.67)

u 2

T H + ua H - ua

The product X-1 (UR - UL) results in the characteristic variables,

{ 2_2dp-2dP }
5[-I(UR-UL) =X-ldU= 1 dP+/5_du

2_ 2

dP -/55 d_

The sound speed is,

a2 _ 7 P
- _(_- 1)c = (_- 1)h = (_'- 1)(,_- !_)

(2.68)

(2.69)

Also note the grouping/5 du can be constructed as,

/sdu = 21dZ2 - 22dZ1 (2.70)

As for the scalar case, first-order spatial accuracy is obtained by taking the right

state to be i + 1 and the left state at i. Higher-order accuracy is obtained using

gradient reconstruction (Eqn. 2.16) applied either to each of the conserved variables

Eqn.2.58) or each of the primitive variables, which are,

v = (2.71)
P

The nodal update is still formed as in Eqn. 2.8. The residual remains as expressed

m Eqn. 2.40, but for systems rather than scalar quantities.
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Fluctuation splitting

The Euler flux (Eqn. 2.59) can be written in terms of the parameter vector,

F = 2_--_-ZIZ 3 -}- 2-_71Z 2

z2za

Further, the derivative of the flux is,

Z2

dF = _A Z3

0

ZI 0

9,+1 _. 7-1
-V-_2 -v-ZI

Z3 &

(2.72)

dZ (2.73)

By assuming a linear variation of the parameter vector on each element, the

fluctuation is obtained from Eqn. 2.41 as,

Ce =-_F_dt_=-/_FzZxd_=-FzAiZ (2.74)

F'zAiZ = AAiU = AiF

Deconinek[36] et al. show,

(2.75)

when the Roe-averaged tbrms (Eqns. 2.63 and 2.64) are used to obtain A.

An upwind scheme is constructed by adding the artificial dissipation,

01 = -Ihl_+}A_u (2.76)

where IAI is defined in Eqn. 2.65. Employing the same distribution fbrmula as tbr

the scalar advection (Eqn. 2.44) leads to an update tbrmula analogous to Eqn. 2.45,

showing the equivalence between DMFDSFV and fluctuation splitting tbr the one-

dimensional Euler equations.

Betbre ending the fluctuation splitting discussion, it is desired to frame the arti-

ficial dissipation in the tbrm,

O_ = sign(Ai+l)¢e (2.77)
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The difficulty lies in defining the matrix sign(?t). One approach combines Eqns. 2.65,

2.74, 2.75, 2.76, and 2.77 to form,

sign(_&)A =lal = XIAIx-1

sign(a) = XIXIX-1A -1 = 2xl__l__-12x -1 (2.78)

Sidilkover[1] offers an alternative to brute force matrix multiplications tbr evalu-

ating Eqn. 2.78. Introduce the auxiliary variables, W, defined by the transfbrrnation,

_u = uw_w (2.79)

where,

dW = /_du

dP

with the first Riemann variable defined as,

(2.80)

dP

ds = dp a2 (2.81)

The Jacobian of the transfbrmation is,

U147 z

1

1 0 7

U 1 ae
U 2 U 2

(2.82)

and its inverse is,

u;_
1-(-/-1)_ (v-)_ -(_-1)9

1 0 (2.83)

The element fluctuation (Eqn. 2.74) can be reworked,

OK = --£k-_iU -1 ~ --1= -UwU w AUwU w AiU = -UwAAiW = Uw& (2.84)

where (_E is the fluctuation as computed fbr the auxiliary variables,

& = -A&w (2.85)
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The flux Jacobian of the auxiliary variable tbrmulation is obtained from the conserved

flux Jacobian via the similarity transformation,

A = uTv1Auw= u_:CA:C-luw = 2A2 -1

so the eigenvalue matrix, A (Eqn. 2.66), remains unaltered.

are obtained from Eqns. 2.67 and 2.83,

-1
X = U w X

/1/ /0/ /0/X (1) = 0 X (2) = a X (3) = -a

LoJ
The inverse is easily computed to be,

X--1 z

1 0 0

1 1
0 2--g 27

1 1
0 2a 2a 2

The flux Jacobian is evaluated from Eqn. 2.86,

0 0

A= 0 _ 1

(2.86)

The right eigenvectors

which corresponds to the tbllowing non-conservative form of the Euler equations,

(2.87)

8t d- u8 x = 0

put + _tpuz + P_ = 0

Pt + a2Pux + uPx = 0

(2.88)

(2.89)

(2.9o)

Having developed an alternative method for obtaining the elemental fluctuation

(Eqn. 2.84), the artificial dissipation can be addressed (Eqn. 2.77).

05_ sign(_k)¢bE -1 • ~ _ _,= = UwUwslgn(A)UwgSE = UwOE (2.91)
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where,

Ok = U_)sign(i)UwOe = sign(A)Oe

and with the aid of Eqns. 2.78 and 2.86,

sign(A) = g;_sign(A)gw = g_)Xl_il_i-lx-lgw-- 2l£1_i-@ -_

(2.92)

(2.93)

Using the eigenvalue and eigenvector definitions (Eqns. 2.66, 2.87, and 2.88) sign(A)

is evaluated to be,

sigI,(_) 0

0 _[sign(_+_)+ sign(_-_)]
sign(A)=

[sign(_;+_) - sign(_-(5)]

0

[sign(_+_) - sign(_,-(_)]

_[sign(_+a) + sign(_-_)]7

(2.94)

By considering two cases, for subsonic and supersonic conditions, Eqn. 2.94 takes on

simple forms,

where,

and,

M sup if'sign(_.) = M _b if'
I_1> ,_

(2.95)
I_1< ,_

M _p = sign(_;)I (2.96)

8ub

sign(_) 0 0

0 0 1-F
a

0 (_ 0

(2.97)

2.4.2 Navier-Stokes Equations

The Navier-Stokes equations[87, 88] tbr the flow of a perfect gas are written in one-

dimensional conservation law form (Eqn. 2.57) with U defined in Eqn. 2.58 and the

flux defined as,

F = F- Fv (2.98)

where the inviscid flux, F i, is the same as the Euler flux (Eqn. 2.59). The viscous

flux is,

{0}FV = _x

_Txx -- qx

(2.99)
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Using Stokes' hypothesis the stress is,

4

_xx= 5n_x (2.100)

Fourier's law for heat flow gives,

qx = -m; (2.101)

The thermal conductivity is related to the viscosity through the Prandtl number,

p_ = 1____e_ (2.102)

where for air Pr = 0.72[89]. The temperature is obtained from the perfect gas equation

of state,
P

T - (2.103)
p_

The inviscid flux is discretized in the manner of section 2.4.1. The contributions

from the viscous flux to the nodal update is obtained in a Galerkin sense using

the system analog to Eqn. 2.54. No viscous contribution is made to the continuity

equation.

Using the linear variation of the parameter vector over an element, the velocity

gradient is locally defined on an element[36, 34],

x %1
Z9 1 (i___iZ2_ _/__._iZ1)= _212._._i_ t = /()/ .Z_I ZI:_ = Z"7 _ /--._ _t

(2.104)

where,

-_= -- (2.105)_Z 1

is called the consistent density average. The viscous contribution to the momentum

equation can now be expressed,

Ji4_VxpU_ dg. = o p

The first term of the viscous energy flux is evaluated in a similar manner,

]i4-_VxpUUx dg_ = Vx#gt Aiu
P

(2.1o7)
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The second term requires some manipulation. Begin by defining the temperature

gradient over an element,

x ,_ = _ (2.108)

where,

P - a2_ (2.1o9)
7

The heat flow contribution to the viscous flux is then obtained,

Vx,_Txd_ = vxr_77_ = vx Pr "rsR ['

The elemental contributions from the viscous terms is similar to Eqn. 2.55,

SiUie

Si+l Ui+lt

#i+½

_i,i+l

#i+½

_i,i+l

o }4-_ Aiua

4~fi .g -4- cv 52 (Ai P _)5u,A_ u __._ p

o }4[_ .

cv 5 2

+ COE

+COE (2.111)

As discussed tbr the scalar advection-diffusion equations, when solving the Navier-

Stokes equations the maximum of the viscous contribution to the nodal update and

the artificial dissipation from the inviscid flux discretization should be utilized. When

the physical viscous terms are large enough, no artificial dissipation is needed.

2.5 Finite Volume State of the Art

The one-dimensional analysis of the Navier-Stokes equations represents the state of art

tbr upwind flux difference split finite volume schemes. Extensions of the unstructured

finite volume method to multiple spatial dimensions relies upon solving a locally

one-dimensional approximate Riemann problem across cell faces, an approach that

looses some of the coupling present in a system of equations. Locally one-dimensional
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solution techniques also introduce preferential grid-aligned wave directions that may

not correspond with physical wave-propagation directions.

The fluctuation splitting framework approaches the governing equations from a

different perspective than finite volume, but is seen to result in identical discretiza-

tions in one dimension tbr the DMFDSFV scheme. However, the tbllowing chapters

show how fluctuation splitting generalizes to multiple dimensions in a more compact

and coupled manner than locally one-dimensional finite volume schemes.



Chapter 3

Two-Dimensional Scalar Analysis

Having shown the equivalence of the fluctuation splitting and DMFDSFV schemes

tbr one-dimensional domains, the extensions to two spatial dimensions are considered.

The present chapter analyzes the case for a single governing conservation law,

v_+ V. P = V. (,Vv) (3.1)

to which steady-state solutions are sought. Systems, e.g. the Navier-Stokes equations,

are deferred to a subsequent chapter.

DMFDSFV is extended in an upwind, edge-based tbrmulation tbr general unstruc-

tured meshes with a multi-dimensional reconstruction. The crucial piece of the solver

remains a locally one-dimensional approximate Riemann evaluator, as developed in

chapter 2. This locally one-dimensional treatment of the fluxes results in increased

production of artificial dissipation, particularly when discontinuities are not aligned

with the mesh[40].

The extension of the fluctuation splitting scheme to multiple dimensions takes

on the flavor of a node-based upwind residual-distribution algorithm, resulting in a

31
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greater flexibility to propagate multi-dimensional wave phenomenon without dissipa-

tion. Fluctuation splitting has a more-compact stencil than DMFDSFV tbr second-

order accuracy and exhibits "zero cross-diffusion" 1 in a grid-aligned condition. Fluc-

tuation splitting is seen to grid-resolve advection-ditthsion problems on coarser meshes

than DMFDSFV.

This chapter begins by defining the different elemental domain structures for

DMFDSFV and fluctuation splitting. Then formulations are developed for the two

schemes and applied to two-dimensional linear and non-linear advection model prob-

lems. Observations are made about the effects in both schemes of grid orientation

on the production of artificial dissipation. Discretizations tbr diffusion follow, along

with results for the heat equation. The chapter concludes with an advection-diffusion

test problem, revealing the improved accuracy and decreased solution times using

fluctuation splitting vis avis DMFDSFV.

3.1 Domain

The DMFDSFV scheme is implemented for an edge-based data structure. The domain

is discretized on an unstructured mesh of arbitrary connectivity. Control volumes are

then constructed about each node. One common method for defining the control

volumes is to use the median-dual mesh, shown as the dashed lines in Figure 3.1.

For a triangulated domain, the generalized median-dual volume about a node equals

one-third the sum of the areas of each triangle connected at that node,

1

=5 Z sT (3.2)
VTIi6T

The fluxes into and out of the control volumes are efficiently computed as a sum

of contributions distributed to the nodes from a loop over edges. For each edge,

the fluxes through the control faces to the right and to the left of the edge, Fig-

ure 3.2, are computed, with the convention that a positive flux is out of the control

1 "Zero cross-diffusion" refers to the practice of adding artificial dissipation terms in the stream-

wise direction only, as opposed to adding artificial dissipation in both the streamwise and cross-

stream directions.
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(a) Interior node.

• Node

Unstructured grid
- - Median-dual control volume

Outward normal

x Quadrature point
0 Current node

1 Distance-one neighbor node

2 Distance-two neighbor node

interior

1 _..: ........... __ _i._ i
........ -_........... "_ boundary

(b) Boundary node.

Figure 3.1: Finite volume computational domain for edge-based implementation.

volume surrounding the initiation node and into the control volume surrounding the

termination node. The fluxes are evaluated at the quadrature points, and data is re-

constructed from the nodes to the quadrature points, denoted by ×, along the vectors

in Figure 3.2.

For the special case of a boundary edge, shown in Figure 3.2(b), two fluxes are

computed to the right-hand side of the edge, one tbr each associated node.

The DMFDSFV scheme is ret?rred to as a locally one-dimensional scheme because

the thndamental Riemann problem is approximately solved normal to a face, with the

solution going to either or both of two nodes only, connected by the physical mesh

edge. The mesh edge and control volume face can have an arbitrary orientation within

multi-dimensional space. The reconstruction step in general can be multi-dimension-

al.

In contrast to the edge being the fundamental computational element tbr DM-

FDSFV, fluctuation splitting is tbrmulated on a multi-dimensional simplex element.

In two dimensions the simplex element is the triangle, while in three-dimensions the

simplex is a tetrahedron. A pictorial of the domain nomenclature tbr fluctuation

splitting is presented in Figure 3.3. Local curvilinear coordinates, (_, _]), are defined
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" _L " _L

_"' N2 ............. i

i

(a) Interior edge. (b) Boundary edge.

Figure 3.2: Flux quadrature for edge-based finite volume scheme. Solid bold line is

physical mesh, dashed lines are control-volume faces.

Figure 3.3: Elemental triangular domain for fluctuation splitting.
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on each triangle, parallel to two of the sides. A good choice of sides tbr the curvilinear

coordinates to minimize computer round-off error may be the two most orthogonal

sides. The fluctuation computed on a triangle may now be sent to one or more of

the three vertices (versus two tbr DMFDSFV), allowing tbr a truly multi-dimensional

distribution scheme.

By definition, all elements are interior to the domain, so no special domain dis-

cretization is needed tbr the boundaries with fluctuation splitting. However, numerical

boundary conditions will still need to be applied at the boundary nodes to account

tbr contributions from 'ghost' elements outside the computational domain.

3.2 Advection

Pure advection is obtained from Eqn. 3.1 when # = 0,

U_ + V. F = 0 (3.3)

This section extends the DMFDSFV procedure in a straight-fbrward manner from

the one-dimensional analysis in chapter 2. Then the fluctuation splitting method is

applied, in a tbrmulation that now diflhrs significantly from DMFDSFV. A tempo-

ral pseudo-time marching solution procedure follows, including a positivity analysis

yielding timestep restrictions. A statement on the boundary conditions concludes the

analytic tbrmulations, leading to results tbr both linear and non-linear test cases.

3.2.1 Formulations

DMFDSFV

The traditional, locally one-dimensional, approximate Riemann solver finite volume

scheme[22] begins by integrating Eqn. 3.3 over the control volumes and applying the

divergence theorem,
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Using mass lumping to the nodes, similar to an explicit finite element treat-

ment[85], the temporal evolution is evaluated on a time-invariant mesh as,

= -

The discretization of the convective flux, /_, is performed using Barth's imple-

mentation[22] of the upwind, locally one-dimensional, approximate Riemann solver

of Roe[13] by constructing the numerical fluxes as a combination of the flux function

and artificial dissipation,

J_f. _ dr __ _ = -Ri (3.6)ffaceAP

faces

The numerical flux a_ the face is analogous to the one dimensional form (see Eqns. 2.12

and 2.38),

ffaee =-_ Fin + Fo_ "(_-(I) (3.7)

where the artificial dissipation provides the upwinding (see Eqns. 2.14 and 2.38),

= 15. - ui, ) (3.8)

Out and in refer to states on the outside and inside of _ at the face. The flux

Jacobians are defined,
OF x OFY

A × - A y - (3.9)
OU ' OU

where S = A×_ + AYd, b_ = FX_ + FYj, and the tilde indicates the conservative

linearizations at _he cell face[13].

Piecewise linear reconstruction from the nodal unknowns to the cell faces as in

Eqn. 2.16, repeated here,

Uf.ee = Ui + OVU-F (3.10)

provides second-order spatial accuracy in smoothly-varying regions of the solution.

Median-dual gradients of the dependent variable, VU, are obtained from the un-

weighted least squares procedure outlined by Barth. Following Bruner and Wal-

ters[90], the limiter is supplied an argument equal to half the argument Barth uses,

namely,

= _ \ 2(V--=-U-:_'----_i_--'_---_;" (3.11)r,)/ /
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where U "_i_/'_ax is the minimum (resp. maximum) of Ui and all distance-one neighbors.

The most restrictive limiting from choosing the minimum or maximum is used.

In casting the limiter argument in this tbrln, Bruner equates the Barth limiter

with Superbee, tbr a limiter argument less than or equal to one. For the tull domain

of the argument, the non-symmetric Barth limiter takes the tbrm,

0 {_<0
= 2 v- if 0<v<7

p>l
q 5

(3.12)

for the limker cast as Eqn. 3.11. Many limiter thnctions exist, and several of the

more popular versions are detailed in appendix A.

The DMFDSFV flux evaluation needs to be performed three times for each inte-

rior triangle, once for each edge of the triangle. For linear advection at a unitbrm

advection speed Eqn. 3.8 requires 4 multiplication/divisions and 2 additions/sub-

tractions. Equation 3.7 requires 4 each multiplications and additions. Ignoring the

work required to compute the nodal gradients and limiter, which varies based upon

the mesh connectivity, the reconstruction, Eqn. 3.10, requires 6 multiplications and

4 additions per face. Equation 3.6 adds one more multiplication per face, bringing

the total operation count tbr DMFDSFV per triangle to 45 multiplications and 30

additions.

Fluctuation splitting

The Narrow Non-Linear (NNL) fluctuation splitting scheme is presented as a slight

re-interpretation of the work of Sidilkover and Roe[3]. The current interpretation

is as a volume integral over triangular elements, without recourse to the divergence

theorem. The discredzed equations, however, are identical to Sidilkover's. This tbrm

of fluctuation splitting employs a general limiter thnction tbr determining the residual

distributions.

Integrating Eqn. 3.3 over an element, where 9 is now the area of the triangular

element,
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For linear variation of the dependent variable over the element, the temporal evolution

is (see also Eqn. 2.26),

where U1, U2, and 5_3 correspond to the three nodes defining element t_.

Using the local curvilinear coordinates (_, _1), defined in Figure 3.3, the divergence

of the convective flux can be transformed,

v. _ =c +_:= o(_ _)+o(r 3) (3_5)
U32 oy

= {x rb

vN {v % vNJ

¢._ = &(F . _)e+ 6( f 3)e+ _j_(F. _),,+ _I_(F. 3),,

Introducing the inverse Jacobian of the coordinate transtbrmation,

2ST

Y-* = x_y, 7 - x_y{ - glg3

and the invariants of the t ranstbrmation,

Yl] fil "'_ Xr; 77'1 "5

_x- j-1- j-1 {y- j-1- j-1

rlx- j-1- j-1 %- j-1- j-1

Eqn. 3.17 becomes,

(3.16)

(3.17)

(3.18)

(3.19)

If/_ is linear or quadratic in U, then tbr a linear variation of U over the element,

£V-Pd_ = + (3.21)_A{U a&,u

where the difference operators are A_U = U2 - U1 and A,_U = U3 - U2 and the

advection speeds are,

Og = Tf?q" , -- ".
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A is now the conservative linearization over the entire triangular element[36].

The advective fluctuation can be defined,

The fluctuation can be split,

where,

(3.23)

¢ =0_+0 ' (3.24)

= O"= -gA,u (3.25)

Following Sidilkover[1] the scheme is extended to second-order spatial accuracy

by repartitioning the fluctuation through the use of a symmetric limiter thnction,

0 *_ =0_+0"_(Q)=0_(1 _(Q))Q

0"" = O' - O'V)(Q) = O' (1 - _(Q))

with,

0 - (3.28)
Cr/

In practice, if' an averaging function, 3/f_, exists for the desired limiter, it is numerically

advantageous to compute Me(0', -¢_) = 0'_(Q), avoiding the need to evaluate Q

explicitly.

This critical step, allowing the redistribution of the fluctuation, is what principally

distinguishes the multi-dimensional fluctuation splitting scheme of Sidilkover from a

locally one-dimensional extension of Riemann solvers. There is no analog to this in

the formulations of chapter 2.

Upwinding is achieved through the introduction of the artificial dissipation terms,

0'_ = sign(oe)gY, ¢'" = sign(fi)¢*' (3.29)

Combining Eqn. 3.14 with a distribution scheme tbr Eqn. 3.23 and summing over
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all elements, the contributions to nodal time derivatives can be written in the tbrm,

$1 _1_ _--

S2U2_ +-

SzU.3_ +-

or in a more compact form,

1 [i(3- i/(O*_+ (-1)_¢ '_)SiUit _---_

+ COE

I

:i(¢*_- 0'_)+ coE

:i(¢*_+ ¢'_)+ (0"" - ¢'") +coE
]

:i(¢*" + ¢'") + toe

1

+ (-4 + 5i- i2)(0 *'- (-1)i_'")]

i = 1, 2, 3

(3.30)

(3.31)

where COE stands tbr contributions from other elements containing these nodes.

The distribution requires 4 addition/subtractions and 3 multiplication/divisions.

Upwinding requires 2 multiplications tbr each term of Eqn. 3.29. Ignoring the cost of

evaluating the limiter thnction, as was done when counting the DMFDSFV operations,

one more multiplication and addition are peribrmed in each of Eqns. 3.26 and 3.27 and

tbr each term of Eqn. 3.25. Finally, a and//, Eqn. 3.22, each require 4 multiplications

and one addition tbr a total operation count of only 19 multiplications, versus 45 tbr

the DMFDSFV scheme. Only 10 additions per triangle are required by fluctuation

splitting, versus 30 tbr DMFDSFV.

3.2.2 Advective Timestep Restriction

Both schemes are fbrmulated as either Causs-Seidel or Jacobi time-relaxation algo-

rithms.

The nodal updates tbr the discrete system can be formed as a sum of contributions

from all nodes.

Ut+_xt = E cJUJ = cirri+ E cjUj (3.32)
j j#i

For positivity[56] each of the coefficients in Eqn. 3.32 must be non-negative.

In the finite volume context the nodal update (Eqn. 3.32) can be rearranged into
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the form of Eqn. 3.5,

Si Si Si

(u: 1)oh+5-t - u:) = X/( .i- S/
j#i

(3.33)

For the upwind, edge-based algorithm considered here, each _cj will be related to

a positive-definite coefficient equal to zero tbr outflowing faces and related to the

wavespeed tbr inflowing faces, yielding the restriction At _> 0 on the timestep. The

remaining term can be expressed,

Si

At (ci- 1) =- E ck (3.34)
k about i

where the ck coefficients are also positive-definite, either zero tbr inflowing faces or re-

lated to the wavespeed tbr outflowing faces. Rearranging and imposing the positivity

constraint, ci >_ O, yields the timestep restriction,

At

--b_o_t_k--ci_>0 (3.35)1 Sik

At < (3.36)
-- Ek about i Ck

For fluctuation splitting, the nodal updates are assembled from Eqn. 3.31 as,

St
j¢i

(3.37)

In this case the cj coefficients are formed as contributions from the fluctuations in

the triangles to both the left and the right, of mesh edge Vj. The positivity restriction

on At is tbund to have a similar tbrm as tbr finite volume (Eqn. 3.36),

Si
At < (3.38)

-- _-_..j¢icj

Local time-stepping based on positivity is shown to yield stable, yet non-conver-

ging, solutions in some second-order cases (see section 3.4). Robust convergence is

obtained by using the first-order c's in Eqns. 3.36 and 3.38, even for second-order-

accurate spatial discretizations. This is similar to the common practice of using a

first-order Jacobian discretization in a time-implicit scheme.
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An implicit scheme can be constructed for fluctuation splitting by linearizing the

flux in time,

= pc + 2 (u - u) (3.39)

The spatial discretization remains the same and the coefficients of the LHS of Eqn. 3.37

are changed from the scalar _ to the operator,At

Si
A---t+ _A_ + _A,, (3.40)

A thll implicit scheme would require inverting the sparse matrix corresponding to

the operator of Eqn. 3.40. Since both A_ and Av operators use a nearest-neighbor

compact stencil, creative re-ordering of the nodes could pack the implicit matrix into

a banded diagonal of' average bandwidth 6. Another strategy is to use a variant of a

red/black coloring, here grouping the nodes into three sets because of the triangular

connectivity. The three sets of' nodes would then be integrated with a line Gauss-

Seidel strategy, where the matrix to invert has been reduced to a simple diagonal tbrm

tbr each set of nodes. The present dissertation does not implement a thlly-implicit

temporal integration.

3.2.3 Boundary Conditions

Explicit Dirichlet inflow boundary conditions are employed. Advective outflow bound-

aries are treated tbr free convection through the boundary nodes, allowing boundary

nodes to be handled in the same manner as interior nodes.

3.2.4 Results

Linear

The linear advection equation is obtained from Eqn. 3.3 tbr a flux function fi = AU,

yielding,

U_ + V.(2U) = 0 (3.41)
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Figure 3.4: First-order fluctuation splitting, uniform advection.

A divergence-free advection velocity is considered, such that. V-£ = 0. Equation 3.41

can then be written,

U_ + _- VU = 0 (3.42)

The appropriate averaged flux Jacobian tbr linear advection is simply A = _,

where _ is evaluated at the quadrature points tbr DMFDSFV and at the element

centroid tbr fluctuation splitting.

Uniform advection

Unitbrm advection of the Heavyside tunction at -45 degrees, _ = (1, -1), on a cut-

cartesian mesh is shown fbr first-order fluctuation splitting, second-order fluctuation

splitting, and second-order DMFDSFV in Figures 3.4 3.6, respectively. The mesh

is shown as the dashed background, and equally-spaced contours vary on [0,11, the

minimum and maximum solution values. The spread of the contour lines with spatial

evolution is indicative of the amount of dissipation introduced into the solution by

the discretization of the convective terms.
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Figure 3.5: Second-order fluctuation splitting, unitbrm advection.

Second-order fluctuation splitting is seen to be greatly superior to first-order, as

expected, reproducing the exact solution in this case with no introduced dissipation.

Also, fluctuation splitting represents a significant reduction in numerical diffusion ver-

sus the corresponding DMFDSFV scheme, with both results employing the Minmod

limiter.

However, the "zero cross-diffusion" results of Figure 3.5 with fluctuation splitting

are misleading. In Figure 3.7 the advection velocity has been rotated counter clock-

wise by 90 degrees on the same grid. Clearly, the artificial dissipation introduced by

the fluctuation splitting scheme has been increased.

The corresponding DMFDSFV solution is shown in Figure 3.8. While the change

in contour spreading tbr the DMFDSFV scheme between Figures 3.6 and 3.8 is less

dramatic than the change in spreading tbr the fluctuation splitting scheme in Fig-

ures 3.5 and 3.7, the fluctuation splitting results still exhibit less diffusion than the

DMFDSFV results, comparing Figures 3.7 and 3.8.

Employing the compressive Superbee limiter with the fluctuation splitting scheme



3.2. ADVECTION 45

U=I
1

y X=(1,-1)

Contour

0.5 spacing:
0.05 - 0.95

0.1 increments

U=O

0-1 -0.5 0

X

Figure 3.6: Second-order DMFDSFV, uniform advection.

yields the results of Figure 3.9. In this case the discontinuity is confined to a 2 3 cell

stencil, and does not grow in space. Applying the Superbee limiter to DMFDSFV

cannot eliminate all artificial dissipation tbr this case, as is possible with fluctuation

splitting. The DMFDSFV results (not shown) corresponding to Figure 3.9 spread the

discontinuity over four cells by the outflow boundary, with a continually broadening

trend.

However, while it is possible to use the Superbee limiter with fluctuation splitting

tbr this case, compressive limiters can be unstable on diflhrent grid orientations. For

example, no degree of compression is stable tbr the case of Figure 3.5. This potential

tbr instability is related to global positivity, as discussed by Sidilkover and Roe[3].

The etlhct of using a general unstructured grid is investigated in Figures 3.10

and 3.11. The unstructured grid in this case was generated using Vcm#[91, 92].

The fluctuation splitting solution exhibits less dissipation, but is not as smooth as

the DMFDSFV solution. While the fluctuation splitting scheme preserves contact

discontinuities over larger spatial ranges than the DMFDSFV scheme, fluctuation
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Figure 3.7: Second-order fluctuation splitting, unitbrm advection.
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Figure 3.8: Second-order DMFDSFV, unitbrm adveetion.
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Figure 3.9: Second-order fluctuation splitting with compressive limiter.

splitting does not, appear to degenerate gracethlly with regard to extreme coarsen-

ing of the unstructured mesh tbr this test case. This behavior could have negative

implications tbr applications employing multigrid convergence acceleration.

Circular" advection

Circular advection is achieved by setting ,_ = (y, -z). A decaying sine-wave input

profile is used,

Utx, O) = rex sin _z)_

Results for the two schemes, using the Minmod limiter, are presented on the worse-

case cut-cartesian mesh in Figures 3.12 and 3.13. Again, the fluctuation splitting

results are considerably less diffusive than the DMFDSFV solution.

The circular-advection problem is also applied on an unstructured mesh. The

input profile tbr this case consists of both a top-hat function and a decaying sine

wave, allowing comparisons between the schemes tbr both sharp discontinuities and
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Figure 3.10: Fluctuation splitting on unstructured mesh.
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Figure 3.11: DMFDSFV on unstructured mesh.
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Figure 3.12: Fluctuation splitting, circular advection.
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Figure 3.13: DMFDSFV, circular advection.
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smooth gradients. The input profile is,

{ (e2Xsin(2_z)) 2 -0.5_<x<0

U(x, 0) = 0 -0.6 _< x < -0.5
0.4 -0.8 < x < -0.6

0 -1 _< x < -0.8

Results tbr this ease are displayed in Figure 3.14 fbr fluctuation splitting and Fig-

ure 3.15 fbr DMFDSFV, both using the Minmod limiter. Fluctuation splitting per-

fbrms significantly better at preserving the top-hat distribution. Fluctuation splitting

also does a better job of maintaining the minimum and maximum values of the sine

distribution, though both schemes do well on the smooth gradient portion of the sine

wave.

Non-linear

The non-linear advection equation is obtained from Eqn. 3.3 tbr the flux function

/_ = (-_, U). In non-conservative tbrm the equation is written,

A coalescing shock problem is considered, with an anti-symmetric input profile,

u(-1,y) = u(o,y)=o

o) = 1 on. = (-1, O)

The exact solution to this problem contains symmetric expansion fans on the sides and

a compression fan at the inflow that coalesces into a vertical shock at (x, y) = (-± ±)2'2 "

The first mesh is cut-cartesian containing 26 x 26 nodes. The fluctuation splitting

and DMFDSFV solutions, both using the Minmod limiter, are presented in Fig-

ures 3.16 and 3.17. Both algorithms exhibit the same grid dependence on the amount

of artificial dissipation as seen betbre, with the left-half solutions having more diffu-

sion than the right halves, due to the grid orientation. Both methods pertbrm the

same in the compression-fan region, coalescing into a shock to within the accuracy of

the input-profile discretization.
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Figure 3.14: Fluctuation splitting on unstructured mesh, circular advection.
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Figure 3.15: DMFDSFV on unstructured mesh, circular advection.
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Figure 3.16: Fluctuation splitting, Burgers equation.
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Figure 3.17: DMFDSFV, Burgers equation.
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The shock is more sharply defined by fluctuation splitting than by DMFDSFV.

Figure 3.16 has the correct shock speed, with nearly the entire gradient captured in

one cell thickness. In contrast, Figure 3.17 shows a slightly incorrect shock speed when

using DMFDSFV, as the shock progresses to the left beyond the coalescence point,

even though the discretization is conservative. The incorrect shock speed results from

a non-symmetric distribution of the dependent variable to the left and right of the

shock, caused by the excessive artificial difthsion generated on the grid-misaligned

(left-hand) side.

Contours of the absolute value of the error are presented in Figures 3.18 and 3.19.

Errors from both computed solutions show a lack of symmetry, again reflecting the

grid dependence of the artificial difthsion terms. The error levels from fluctuation

splitting are less than from DMFDSFV. The shock curvature in the DMFDSFV

solution at the coalescing point is clearly visible in Figure 3.19, resulting in significant

downstream errors in the shock location as compared with the fluctuation splitting

errors.

This problem is repeated on a 25 x 25 mesh with symmetric diagonal cuts, favor-

ably aligned with the advection directions. The fluctuation splitting and DMFDSFV

solutions, Figures 3.20 and 3.21, are in good agreement. Plots of the absolute error

contours, Figures 3.22 and 3.23, show fluctuation splitting to be a little more accurate

than DMFDSFV tbr this case.

The final mesh tbr this case is a truly unstructured triangulation containing

847 nodes and 1617 cells. The nodes are clustered to the outflow boundary, with

an arbitrary bias towards the left-hand side, introduced merely as an additional chal-

lenge tbr the schemes. The fluctuation splitting solution is presented in Figure 3.24,

showing very accurate and crisp shock resolution and good symmetry in the solution

contours despite the mesh-clustering bias. In contrast, the DMFDSFV solution in

Figure 3.25 has a more-diffuse shock and again an incorrect shock speed, with the

outflow shock olivet to the left of z - 1 The DMFDSFV solution is also somewhat
2"

less symmetric than the fluctuation splitting solution.
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Figure 3.18: Fluctuation splitting, Burgers equation, absolute error.
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Figure 3.19: DMFDSFV, Burgers equation, absolute error.
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Figure 3.20: Fluctuation splitting, Burgers equation, symmetric mesh.
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Figure 3.21: DMFDSFV, Burgers equation, symmetric mesh.
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Figure 3.22: Fluctuation splitting, Burgers equation, absolute error.
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Figure 3.23: DMFDSFV, Burgers equation, absolute error.
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Figure 3.24: Fluctuation splitting, Burgers equation, unstructured mesh.
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Figure 3.25: DMFDSFV, Burgers equation, unstructured mesh.
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3.3 Diffusion

The model diffusion equation, the well known heat equation, is obtained from Eqn. 3.1

when fi = 0,

Ut = #-(#VU) (3.43)

Lacking cross-derivative terms, the heat equation sutt?rs somewhat as a model fbr the

Navier-Stokes equations.

Two methods fbr evaluating the ditthsion term are detailed. The finite element

fbrm has a more compact stencil and will be shown to be more accurate. Either dif-

fusion discretization can be used with either advection discretization, and in practice

the finite element ditihsion treatment is preferred with both the fluctuation splitting

and DMFDSFV advection schemes.

3.3.1 Formulations

Finite volume

In finite volume tbrm, with the aid of the divergence theorem, Eqn. 3.43 becomes,

J_ utd_ = JI #VU . _dF (3.44)

Discretizing the RHS of Eqn. 3.44, in a manner similar to Eqns. 3.6 and 3.7 (see also

Eqns. 2.50 and 2.51) yields,

J; #VU . _dF-_ --+ Z -_#(VS_ + VUo_t) . fi AF (3.45)
faces

where in ref?rs to the state inside the control volume and out retbrs to the state

on the other side of the face from the control volume. The ditihsion coefficient is

averaged over the length of the face. The gradients from Eqn. 3.10 are not limited

befbre averaging at the control-voluIne faces in Eqn. 3.45, as suggested by Anderson

and Bonhaus[83].
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Finite element

A finite element treatment, similar to Tomaich[50], is employed. Begin by integrating

Eqn. 3.43 over an element, where t_ is now the area of the triangular element,

J_ Ut d_ : J_ V.(#VU)dt_ (3.46)

The diifhsive fluctuation is defined,

¢_' =/_ V-(#VU) dt_ (3.47)

Assuming piecewise-linear data and an element-averaged dif[usion coefficient leads

to a diffusive fluctuation of zero for the triangular element. Introducing the linear

nodal shape functions vi, such that }-:_i_1 vi = 1, the elemental diffusive fluctuation

can be expressed ¢v = El31 ¢_, = 0, where

Cv = _v. (#vu) _ (3.48)

Integrating by parts (analogous to Eqn. 2.53),

Cv = _; vipVU._.dF- £ pVU. ¢vid_ (3.49)

The boundary integral in Eqn. 3.49 will cancel for interior nodes on summing con-

tributions from neighboring elements. For linear variation of U over the element the

remaining volume integral can be evaluated analytically,

3

Cu- -_ _ + -e_¢_ (3.a0)2ST Uj{jTtj Vui- 2ST

-gi 3 J_i
j 1

where # is the element-average ditfhsion coefficient.

3

#g_ _ b56_zj_ (3.51)4ST

The physical dissipation is then distributed to the nodal updates as,

&b_ +- ¢_'+ coF, (3.52)
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3.3.2 Diffusive Timestep Restriction

Continuing the positivity discussion from section 3.2.2, restrictions on the times_ep

are sought to maintain positive coefficients ci in Eqn. 3.32.

Untbrtunately, the finite element tbrmulation tbr the diifhsive terms (Eqn. 3.51)

cannot be guaranteed to preserve local positivity on obtuse triangles (see Barth[22]).

Considering only the contributions from the current node, the coefficient tbr the

diffusion term can be written,

(U_+At = Ut 1 - S---]_ .4ST ] (3.53)

The resulting timestep restriction is,

zt < (3.54)
-- ET #e_

4ST

In a similar manner the timestep restriction from Eqn. 3.45 is,

st < (3.55)- 3_(Ar)2
ET 4ST

3.3.3 Boundary Conditions

For the diffusion terms a Neumann outflow boundary is applied with zero gradient

normal to the boundary (VU._z = 0), achieved by setting the boundary integral in

Eqn. 3.49 to zero.

3.3.4 Heat Equation

The heat equation (Eqn. 3.43) test problem, a steady-state boundary value problem

on the unit square in the second quadrant, is taken from Tomaich[50]. The Dirichlet

boundary values are,

u(-1, y) = o u(o, y) = sin(_y)

U(_,0) =0 U(_,_) =-sin(_)
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The analytical solution on z = [-1, 0], p = [0,1] is,

1
- [sinh(zr (x+ 1)) sin(Try) + sinh(zry) sin(Tr (x+ 1))]U(x, y) sinh 7c

Both ditihsion discretizations, Eqns. 3.45 and 3.51, are compared on a 438-node

unstructured mesh. Figures 3.26 and 3.27 plot the absolute value of the error in

the converged solutions using Eqns. 3.45 and 3.51, respectively. A carpet plot of the

solution, using the finite element tbrmulation, is presented in Figure 3.28.

The finite element treatment is clearly more accurate, and is used to discretize

the diffusion terms tbr both DMFDSFV and fluctuation splitting in the tbllowing

section. The average-gradient results in Figure 3.26 appear to exhibit a decoupling

mode, similar to odd/even decoupling tbr structured meshes.

3.4 Advection-Diffusion

When considering combined advection and difthsion problems, rather than adding

both physical and artificial dissipation terms, it is advantageous to only augment

the physical dissipation with as much artificial dissipation as is necessary to ensure

monotonicity of the solution. That is, if the physical dissipation term is larger than

the computed artificial dissipation, no artificial dissipation is needed.

This rationale can be implemented with fluctuation splitting, tbr example, by

modit?dng the fluctuation distribution (Eqn. 3.30) to be,

S1Ult +---7+max - ,¢_ +COE

¢*_+¢*' ((¢'_-¢"))$2U2_ +-- 2 + max _ , ¢_ +

$3U.3_ +--T +max\ 2 '¢3 +COE

COE

(3.56)

Similarly tbr DMFDSFV, the artificial dissipation _erm in Eqn. 3.8 can be compared

with the physical difthsion term.
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Figure 3.26: Pure-diffusion problem error, dittusion terms from E qn. 3.45.
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Figure 3.27: Pure-diffusion problem error, dittusion terms from E qn. 3.51.
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Figure 3.28: Heat equation solution using finite element formulation. Contour incre-
ment is 0.1.

Smith &; Hutton problem

The final scalar test case is a linear advection-diftusion (Eqn. 3.1) problem due to

Smith and Hutton[93]. The flux thnction is/7 = AU, with,

X = (2y(1- x2), -2x(1 - y2))

The streamlines for this problem, while not truly circular, are similar in orientation

to the circular advection problem. The inflow profile is,

U(x, 0) = 1 -- tanh(20z -4- 10)

The diffhsion coefficient is chosen to be a constant, # = 10 -3. The domain is the unit

square in the second quadrant. No closed-fbrm solution is known to the author for

this problem.

A sequence of five unstructured meshes is considered. The meshes have no pre-

f_rred clustering or stretching and have nominal node-spacings of 0.1, 0.05, 0.025,
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Mesh Nodes Fluctuation Splitting DMFDSFV

(CPU seconds)
A 134 < 1 < 1

B 495 1 1

C 1,928 5 8

D 7,529 64 145

E 28,915 760 1880

Table 3.1: Grids and solution times tbr advection-ditthsion problem.

Fluctuation Splitting DMFDSFV

(art.) (phys.) (art.) (phys.)

1274 215 A 1918 190

597 265 B 640 176

192 161 C 144 119

54 76 D 46 66

13 36 E 18 36

Table 3.2: L2-norms (× 105) of artificial and physical viscosities tbr advection-diffusion

problem.

0.0125, and 0.00625, labeled as Meshes A E, respectively. The number of nodes tbr

each mesh, along with the solution times tbr both fluctuation splitting and DMFDSFV

on a 195 MHz SGI R10000 CPU are listed in Table 3.1.

L2-norms of the artificial and physical viscosities computed using both fluctuation

splitting and DMFDSFV are presented tbr each mesh in Table 3.2. Notice that the

norm of the artificial dissipation tbr both DMFDSFV and fluctuation splitting drops

lower than the norm of the physical dissipation on Meshes D and E. However, the

norm of the physical dissipation is smaller tbr DMFDSFV than fluctuation splitting on

each mesh A D. The physical viscosity is driven by the solution curvature, suggesting

fluctuation splitting maintains the solution profile sharper than DMFDSFV on the

coarser meshes. A comparison of outflow profiles will soon verit3_ this interpretation.

Evidence of a grid-resolved fluctuation splitting solution is seen in Figures 3.29
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Figure 3.29: Fluctuation splitting profiles on fnest mesh, advection-dittusion problem.

(FS = fluctuation splitting)

and 3.30. The fluctuation splitting solution on Mesh E at the outflow boundary is

presented along with the inflow profile and the corresponding pure-advection (# = 0)

fluctuation splitting solution in Figure 3.29. Because the pure-advection solution

is seen to replicate the inflow profile, the fluctuation splitting artificial dissipation is

insignificant on this mesh, and hence further grid refinement would not appreciably

change the solution. Plotting only the fluctuation splitting results with respect to

grid refinement, Figure 3.30 shows a convergence of the outflow profile by Mesh C tbr

fluctuation splitting.

The accuracy of fluctuation splitting and DMFDSFV are compared in Figure 3.31,

where the outflow solutions from fluctuation splitting and DMFDSFV are plotted tbr

Meshes C and E. Taking the grid-converged fluctuation splitting Mesh-E solution to

be the true solution, it is clear that fluctuation splitting reaches the grid converged

solution on a coarser mesh than DMFDSFV.

Computational efficiencies of the two algorithms are compared in Figure 3.32,
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Figure 3.30: Fluctuation splitting grid convergence, advection-difthsion problem.
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Figure 3.31: Fluctuation splitting and DMFDSFV fbr advection-diffusion problem.

(FS = fluctuation splitting, FV -- finite volume)
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Figure 3.32: Convergence histories for advection-difthsion problem. (FS = fluctuation

splitting, FV = finite volume)

where the L2-norm of the residual is plotted versus CPU time for the fine-mesh

fluctuation splitting and DMFDSFV solutions, along with the fluctuation splitting

convergence history on Mesh D. The Mesh-E fluctuation splitting solution converges

in 760 sec. The corresponding DMFDSFV solution takes 2.5 times longer than fluc-

tuation splitting, due, in part, to the need to reconstruct gradient intbrmation at

each node with DMFDSFV tbr second-order spatial accuracy. However, considering

the solution time to reach a given accuracy, it is more reasonable to compare the

fluctuation splitting solution time on Mesh D to the finest-mesh DMFDSFV solu-

tion. The fluctuation splitting Mesh-D solution took only 64 sec, a factor of 29 times

less than DMFDSFV on Mesh E, and still shows better accuracy than the fine-mesh

DMFDSFV solution.

An even greater speedup is seen with fluctuation splitting in conjunction with the

Van Albada limiter, where now the Mesh-B solution over-plots the curve from the

finest grid, shown in Figure 3.33. The corresponding DMFDSFV result using the
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Figure 3.33: Advection-diffhsion results using Van Albada limiter. (FS = fluctuation

splitting, FV = finite volume)

Van Albada limiter on Mesh B is included, and clearly falls short of the fluctuation

splitting accuracy. The DMFDSFV case was repeated with the highly-compressive

Superbee limiter with little improvement in accuracy. The solution time tbr fluctua-

tion splitting on Mesh B is about one second, yielding a speedup factor of 2 3 orders

of magnitude over DMFDSFV.

The final set of results addresses convergence issues while pushing the positivity

limits. Figure 3.34 compares two convergence histories for the second-order fluctu-

ation splitting on Mesh B. The non-converging, though stable, convergence history

is the result of using strict positivity arguments to set the timestep (Eqn. 3.38).

The resulting solution is bounded and approximately correct but oscillatory. Limiter

"ringing" is the cause of this behavior, with the higher-order discretization tbr the

implicit matrix reducing the diagonal dominance, and hence stability, of the Gauss-

Seidel iteration.

Full convergence is achieved by using first-order positivity coefficients, which are
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Figure 3.34: Convergence rates using first.- and second-order positivity coefficients.

not dependent on the limiters. The resulting local timesteps will not be as large as

true second-order positivity would allow, but are more robust.

3.5 Benefits of Fluctuation Splitting

Fluctuation splitting and DMFDSFV schemes have been compared in detail as ap-

plied to scalar advection, diffusion, and advection-ditthsion problems. The fluctuation

splitting scheme is seen to introduce less artificial dissipation while treating advection

terms, allowing tbr more accurate resolution of weakly dissipative advection-diffusion

problems. The ability to resolve solutions to these problems on coarser meshes makes

the fluctuation splitting scheme the preferred choice over DMFDSFV.

Linear advection test problems were utilized to investigate the dependence of

artificial dittusion production on grid orientation. Both fluctuation splitting and

DMFDSFV are shown to exhibit grid dependencies, but with fluctuation splitting

producing less artificial dissipation on all grids considered.
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A non-linear coalescing shock problem further explored grid dependencies as cases

were constructed that result in incorrect shock speeds for DMFDSFV. Fluctuation

splitting shows correct shock speeds for all grids and provides tighter shock capturing

than DMFDSFV.

An advection-ditfhsion problem with small physical dissipation (diffusion coeffi-

cient of 10 -a) was considered where the reduction in artificial dissipation with fluctu-

ation splitting results in a significant accuracy improvement over DMFDSFV. Con-

vergence times were compared, showing a speedup of 2.5 for fluctuation splitting over

DMFDSFV on identical grids, using a point Gauss-Seidel relaxation. However, a grid

convergence study shows fluctuation splitting has better resolution of the solution on

a coarser mesh than DMFDSFV does on finer meshes, resulting is a speedup of 29

for fluctuation splitting over DMFDSFV.



Chapter 4

Scalar Mesh Adaption

Mesh adaption strategies, fbr use in conjunction with the discretization and solution

procedures discussed in chapter 3, are sought for two-dimensional scalar problems.

Mesh adaption seeks to reduce to a minimum the number of nodes needed to obtain a

desired level of solution accuracy. Implicit in this objective is the optimal placement

of the retained nodes fbr a "most-accurate" solution.

Many authors[61, 62, 65, 66, 67, 94] prefer to maintain isotropic (or nearly so)

elements while perfbrming unstructured mesh adaption. Their belief is that the ac-

curacy of the solvers degrades on anisotropic elements. However, the use of isotropic

elements will lead to excessive mesh densities when resolving phenomenon with dis-

parate length scales in multiple dimensions, e.g. plane shocks or boundary layers.

A contrasting approach is to employ anisotropically stretched elements, a technique

long used tbr structured meshes[57, 70]. More recently, highly anisotropic elements

have been demonstrated with unstructured grids[71, 74, 91, 95].

Two primary techniques are commonly used to perform mesh adaptions. One is

to perfbrm a global remeshing[96], where the adapted mesh is unrelated to the initial

grid. This method works well when the adapted mesh will be significantly difl>rent in

character from the initial mesh and usually employs an efficient grid-generation code

to accomplish the adaption, with the initial solution driving the placement of source

terms for the grid generator.

71
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An alternative strategy is to tbrm the adapted mesh from a series of local opera-

tions on the initial mesh, based upon the local solution. This approach is very efficient

when only a smaller fraction of the total grid requires refinement. Also, local opera-

tions can allow tbr more control over the adapted grid and can be more robust than

global grid generators. On the other hand, global remeshings can produce smoother

grid distributions than can local operations. The present dissertation will pursue the

local adaption strategy, as opposed to global remeshings. As betbre, unstructured

triangulated domains are considered with the solution values stored at the nodes.

This chapter begins by introducing the current state-of-the-art tbr anisotropic local

refinement tbr finite volume solution methods as advocated by Habashi[71, 74, 75, 76].

Then a consideration of the behavior of fluctuation splitting methods on general

meshes is presented. From this, a framework for local, anisotropic mesh refine-

ment is developed in conjunction with the multi-dimensional fluctuation splitting

scheme. The behavior of the new fluctuation splitting adaption strategy has a feature-

aligmnent flavor, rather than feature-clustering like current methods, implying a re-

duction in the required number of nodes, and hence solution times, tbr non-linear

problems.

4.1 Curvature Clustering

Current state-of-the-art for unstructured mesh adaption is based on a posteriori error

estimation[61, 62, 65, 66, 67, 69, 71, 74, 75, 76, 97, 98, 99]. The error estimates

can be derived either by looking at the leading truncation error terms in the spatial

discretization or by considering the solution interpolation error. In practice, either

approach reduces, tbr second-order-accurate spatial discretizations, to a check on the

curvature of the solution. Nodal positioning is then driven to equate the scaled

second derivatives along all edges. If isotropic cells are desired, the magnitude of

the local curvature inversely dictates the element sizes, while tbr anisotropic adaption

directional derivatives can be used to stretch elements.
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Figure 4.1: Edge swapping schematic.

Habashi[76] defines the a poste_'io_'i error estimate on an edge to vary like,

lEvi _ g2 02U (4.1)
c9_-2

or as "the edge length squared times the second derivative of the solution." In the

finite volume context, one simple and efficient way to construct an edge-based error

estimate along edge 01 is,

Iv01 r'01

)IErl ,"-.' V_'?I" -- _U O.
_01 601 = U1 - _]o "'_1 (4._)

The edge-based finite volume scheme detailed in chapter 3 already perfbrms the gra-

dient computations, making the error estimate a trivial computation.

4.1.1 Adaption Mechanics

Edge swapping

One simple method to improve a mesh is to swap edges between nodes, altering the

local connectivity. If the triangles to either side of an edge tbrm a convex quadrilateral

(Figure 4.1) then that edge is a candidate to be swapped. If the error estimate tbr

the swapped connectivity is smaller than tbr the current edge connectivity, then the
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Figure 4.2: Initial, poorly aligned mesh and solution. Solution contours vary on (0,1)

with 0.1 increments.

edge is swapped. In practice, an error threshold is employed to avoid limit cycles in

smooth regions of the solution.

The edge swapping procedure is demonstrated in Figures 4.2 4.4. The problem

statement is linear advection of a shear discontinuity with _ = (1, 1) and a unitbrm

inflow on the left boundary U(-1, y) = 0 and unitbrm inflow on the bottom bound-

ary U(z, 0) = 1. The DMFDSFV scheme is used and reconstruction is perfbrmed

using the compressive Van Albada limiter. The initial mesh is poorly aligned,

Figure 4.2(left), and the resulting solution shows significant contour spreading, Fig-

ure 4.2(right). Successive global edge swapping sweeps, Figures 4.3 and 4.4, improve

the solution, reducing the contour spread.

Excessive dissipation is created in the bottom left inflow cell tbr this case, where

the diagonal is not swapped with the present routine. Node insertion, to be discussed

presently, will be able to handle cells such as these, where the edge swapping logic

breaks down.
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--+ --+ --+

Figure 4.5: Reduction from 6 to 3 edges connected to node 0.

Figure 4.6: Four edges are the minimum that must be connected to node 0.

Point deletion

If all edges connected to a node have an error estimate, Eqn. 4.2, less than a threshold

value, then that node can be removed. Once a node is flagged for deletion, the number

of edges emanating from that node are reduced via edge swapping, as depicted in

Figure 4.5. Usually, the number of edges connected at a node can be reduced to

three, though Figure 4.6 shows a case where the minimum number of connected

edges at the node is four.

The removal of one node also eliminates two triangular elements and three edges.

A schematic of the actual removal process of an interior node is depicted in Figure 4.7

for both the three and four edge connectivity cases. The removal of a boundary node

with three edges connected, depicted in Figure 4.8, eliminates one triangular element

and only two edges.

The objective of point deletion is to minimize the number of grid points while

retaining the same accuracy. In practice, bookkeeping of node/cell/edge numbering

is the most difficult part of the point deletion process.
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--+

(a) Three edges connected. (b) Four edges connected.

Figure 4.7: Schematic of node deletion.

--+

Figure 4.8: Schematic of boundary node deletion.

A numerical example of point deletion is presented tbr the 45 ° linear advection

example. Figure 4.9 shows a grid and converged DMFDSFV solution to which the

edge swapping routine has been applied. The point deletion routine is then applied,

resulting in the grid of Figure 4.10. The solution on the reduced mesh remains

unchanged from the finer-mesh solution.

Point insertion

Point insertion can be considered to be the opposite procedure of the tbur-edge con-

nectivity point deletion, shown in Figure 4.7(b). If the error estimate along an edge

exceeds a given threshold, then that edge is flagged tbr refinement. A new node is

added at the midpoint of the edge, two new cells are defined, and three new edges

are created. The aim of point insertion is to increase solution accuracy, albeit at an

increased computational cost due to the additional mesh nodes. Use of the local error

estimator allows tbr selective refinement and results in t_wer nodes than would be
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produced by a global refinement.

The familiar numerical example of this section is continued by applying the point

insertion algorithm to the solution and mesh last shown in Figure 4.10. The locally

refined mesh, with most of the refinement occurring near the inflow boundary where

the greatest artificial diffusion is produced, is shown in Figure 4.11, where 13 new

nodes have been introduced. The solution shows improved accuracy, particularly in

the reduced spreading in the lower left corner.

Nodal displacement

The tburth local adaption technique considered is nodal displacement. Neither the

number of nodes nor their connectivity are altered, but their spatial location is op-

timized. The nodal displacement concept mimics the Gauss collocation quadrature

points familiar in calculus, and hence seeks to improve solution accuracy without

increasing computational cost.

The approach taken here uses the spring analogy, similar to the techniques pre-

sented by Gnoflb[57] and Ait-Ali-Yahia[70] et al. The springs are taken to be the

mesh edges. The spring constants are the edge error estimates. A minimization is
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Figure 4.12: After nodal displacements. Solution contours vary on (0,1) with 0.1
increments.

then sought for a potential energy formed as,

1 IE_I.j_2E _ r'0J j is all distance 1 neighbors to node 0 (4.3)
j

The minimum is obtained by setting the derivative to zero, giving the requirement,

EIE_ I._g0,j =0 (4.4)
j

where 0' indicates the new, minimum energy position of node 0. Holding the edge

error estimate constant during the displacement, an updated position vector can be

obtained,

_IE_Ij (<j + ,_0,o)= 0 (4.5)
J

_ E.jlE,-IN_0j
F0 0, z --/_0'0 -- EjlZ,.I, (4.6)

Equation 4.6 gives the position vector pointing from the current location of node 0

to its adapted location. This adapted location is an attempt to optimally equate the

sealed error estimates over all edges connected to the current node. Since the error
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estimates are held constant during the local adaption step, an iterative process is

required to obtain the optimal nodal positions.

The nodal displacement routine is applied to the results in Figure 4.11, completing

one global iteration of the full mesh adaption suite for unstructured meshes, consist-

ing of nodal displacements, insertions, and deletions and edge swapping. Solution

improvement, shown in the tighter contour clustering in Figure 4.12, particularly

toward the upper right, is demonstrated using the point movement technique.

4.1.2 Adaption Procedure

Following the recommendations of Dompierre[71] et al. and Habashi[76] et al., the

nodal displacement technique is used as a smoother between applications of the other

three adaption operations. Also, close coupling between the solver and the mesh

adaptor is to be maintained.

The overall solution strategy theretbre follows:

1. Solve on initial mesh.

2. Swap diagonals and iterate solver.

3. Move nodes and iterate solver.

4. Insert nodes and iterate solver.

5. Move nodes and iterate solver.

6. Delete nodes and iterate solver.

7. Swap diagonals and iterate solver.

8. Move nodes and iterate solver.

Steps 4 8 are repeated until convergence of the entire process.

The entire solution-adaptive procedure is applied to the 45 ° shear problem using

the DMFDSFV solver with the Van Albada limiter. The initial grid, containing
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Figure 4.13: Starting mesh and converged solution, _ = (1, 1). Solution contours vary
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121 nodes, and the solution on this mesh are shown in Figure 4.13. After only fbur

complete adaption cycles, the mesh size has been reduced to just 103 nodes while

capturing a very accurate solution, as seen in Figure 4.14. While the mesh adaption

is highly anisotropic, the solution remains well behaved.

A demonstration of' the method is also perfbrmed tbr a case with a variable ad-

vection velocity, namely the circular advection problem. The inflow profile contains

a linear ramp between U = 0 on x _< -0.7 and U = 1 on x _> -0.6. The initial mesh

is the same as fbr the shear case, containing 121 nodes. The solution on this mesh

is excessively smeared, Figure 4.15. Three mesh adaption cycles were perfbrmed, re-

sulting in a final mesh having 146 nodes. A significant improvement is again seen in

the resulting solution, Figure 4.16.

4.2 Characteristic Alignment

4.2.1 Exact Advection Solution

While anisotropic adaption to reduce a posteriori error estimates represents current

state-of-the-art fbr unstructured-grid finite volume algorithms, it was shown in chap-

ter 3 that there exists a better scheme tbr multi-dimensional advection than DMFDS-

FV, namely fluctuation splitting. The question arises as to whether an edge-based

error estimate, which is by the definition of an edge a locally one-dimensional indi-

cator, is an appropriate adaption criteria fbr a truly multi-dimensional scheme. This

section explores the development of candidate multi-dimensional adaption criteria

that fit within the framework of the tbur local anisotropic adaption operations edge

swapping, point insertion, point deletion, and nodal displacement.

As a starting point, posit that an optimal mesh is one with the least number of

nodes on which a positive scheme can obtain a solution free from artificial dissipation.

The artificial dissipation terms tbr fluctuation splitting, ¢_ and el' in Eqn. 3.29,

were seen to scale with the limited fluctuations, ¢*_ and _*_' in Eqns. 3.26 and 3.27,

respectively. For a locally positive scheme the limited fluctuations are bounded by

the total cell fluctuation. Thus, driving the cell fluctuation to zero will eliminate
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artificial dissipation production, and vice versa.

Combining Eqns. 3.22, 3.24, and 3.25, the cell fluctuation is,

-_ _3 ^ 2_r _

or,

(4.7)

1
[gl_<tlOl -- (_'1Ill q- _3_<t3)U2 q- _'37_3C73] ".4 (4.8)

Noting the vector identity _i8_1 _?_i/!i= 0, the fluctuation can be expressed in compact

notation,
3

1EC_ei_ti.2 (4.9)
i--1

Recall from the notation for an element's geometry, Figure 3.3, that edge i is the edge

on the opposite side of the triangle from node i. If the cell-averaged flux Jacobian, A,

is parallel to side i, then fii'J = 0. In the context of mesh adaption, assume that

an edge, say without loss of generality edge 3, is aligned to be parallel to A, then

from Eqn. 4.7 it is clear that the fluctuation, and hence the artificial dissipation, goes

to zero as U2 --+ U_. Note that this condition for a vanishing fluctuation holds true

irrespective of the value U.3.

The known solution to steady advection is that the solution remains invariant

along the characteristics. A coupled solution-adaptive strategy is apparent the adap-

tion aligns one edge of each cell with the discrete counterpart to the characteristic,

namely A, and the fluctuation splitting scheme converges to an exact advection so-

lution by equating each downstream node of an aligned edge with the value of the

upstream node. Efforts along this tack follow, though not without some lingering

questions. What of the non-linear problem, where characteristics vanish at a shock?

How can systems of equations be handled with multiple or imaginary characteristics

defined on each cell? What about combined advection-diffusion problems where the

exact solution no longer remains invariant along characteristics?

By way of demonstration that in fact fluctuation splitting does compute the exact

solution to multi-dimensional linear adveetion problems when the grid is aligned such

that each triangle with non-zero gradient has one edge parallel to the cell-average

advection velocity, the two cases employed with the curvature clustering adaption are
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considered. The 45 ° shear case can be captured using a mesh with only 6 nodes, none

of which are on the interior. The optimal mesh and fluctuation splitting solution

are shown in Figure 4.17. Contrast these results with the mesh-adapted DMFDSFV

solution to this problem in Figure 4.14. Fluctuation splitting in this case produces

a more accurate, dittusion-free solution on a mesh 17 times smaller. A DMFDSFV

solution is pertbrmed on this optimal fluctuation splitting grid, yielding the results

of Figure 4.18, where 30 percent of the shear discontinuity has been smeared by the

outflow boundary.

For the circular advection problem a mesh is constructed containing 10 nodes, an

order of magnitude thwer than were in the adapted DMFDSFV results of Figure 4.16.

The fluctuation splitting mesh and solution are shown in Figure 4.19, where the inflow

profile is exactly mapped to the outflow boundary. The mesh is called _optimal'

tbr this case because it contains the fewest points required to eonvect a ditthsion-

free solution. However, the solution representation on the interior of the domain is

exact only in a discrete sense. Note that while the DMFDSFV solutions used the

compressive X/an Albada limiter, the fluctuation splitting solutions were pertbrmed

with the non-compressive Minmod limiter. The DMFDSFV solution on the optimal

fluctuation splitting grid is shown in Figure 4.20, where it is clear that significantly

more nodes will be required to achieve reasonable accuracy.

These test cases suggest a tremendous potential tbr highly accurate fluctuation

splitting solutions on extremely coarse meshes, when properly aligned.

4.2.2 Adaption Strategies for Fluctuation Splitting

The fundamental strategy for optimizing a mesh fbr fluctuation splitting solutions to

linear-advection problems is to align one edge of each triangle with the cell-average

characteristic direction. Translating this requirement into a systematic logic for local

adaption is not straight-tbrward, particularly fbr a variable advection velocity when

one edge cannot simultaneously be aligned with the characteristics in the elements to

both the right and left of the edge.



4.2. CHABACTERISTIC ALIGNMENT 87

Y

0.8

0.6

0.4

0.2

0_1 I-0.2
I I I

-0.8 -0.6 -0.4

X

1

0.8

Y

0.6

0.4

0.2

0_ 1
I I I I I

-0.8 -0.6 -0.4 -0.2 0

X
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(a) Misaligned mesh.

3 4

2 1

(b) Aligned mesh.

Figure 4.21" Edge swap options fbr linear advection with fluctuation splitting.

Edge swapping

Consider the 45 ° shear adveetion on a unit square, Figure 4.21. For this problem

A = A = (1, 1)fbr all cells. The choice of diagonal perpendicular to _, Figure 4.21(a),

constitutes a poorly aligned grid. The other choice of diagonal, Figure 4.21(b), creates

a perfectly aligned grid. For the misaligned grid the cell ttuetuations can be computed

using Eqn. 4.9,

1

CA = _(2U1 -- _dr'2 -- U4)

1

¢. = _(u,2+ 55 - 2ua)

and their sum is CA + CB = U1 - Us.

For the grid-aligned case, the fluctuations are,

1 CA+ ¢.
¢_ = _(u1 - u3) = ¢b -

(4.10)

(4.11)

which leads to the observation,

4)d + 0, = 0_ + ¢b = 24)_ (4.12)

Clearly, swapping the diagonal does not in itself reduce the total fluctuation. Yet it

is known that fluctuation splitting will obtain the exact solution on the aligned grid

and a diffused solution on the misaligned grid (recall the results of section 3.2.4).
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Still seeking a link between mesh alignment and fluctuations, consider the RMS

of the fluctuations. It is postulated that the RMS of the fluctuations is less on the

aligned mesh than on the misaligned mesh. The proof proceeds from Eqn. 4.15,

CA + ¢. = 2G

O_+2¢AOB+¢_ =40_

0_+0_ =40_--20AOB

1 2 40A0.) + 502a= _(40a-

[( 12 2

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

1 2

G + G = _(¢5 - 20_¢. + G) + 2¢_
1

= _(¢__ ,.)2 + 5¢Z

(4.18)

(4.19)

(4.20)

The use of the RMS of fluctuations to guide adaption for scalar problems has

been proposed by Roe[32, 77]. The fluctuation splitting solver Roe employs is of the

non-positive type, and for general solutions suffers from extreme dispersion errors.

Also, nodal displacements are the only adaption operation demonstrated.

A demonstration of the present edge swapping is performed for the 45 ° shear

problem. The initial grid and fluctuation splitting solution are shown in Figure 4.52.

The fluctuation splitting solution on this mesh is similar to the one obtained using

DMFDSFV in Figure 4.13. However, after just a single edge swapping sweep the

exact solution is obtained by fluctuation splitting, Figure 4.23. DMFDSFV was not

able to match this accuracy from fluctuation splitting even on the highly adapted

mesh from Figure 4.14.

Point deletion

Point deletion for a fluctuation splitting grid mimics the procedure previously dis-

cussed in the finite volume context. If' all elements connected at a given node have
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small or vanishing fluctuations, then that node is a candidate tbr deletion. Edge

swapping is pertbrmed to reduce the number of edges, and hence cells, connected to

the node, under the restraint that the RMS fluctuations of the swapped conflgura-

tions must remain small. If the number of cells connected at the node can be reduced

to three, then the node can be deleted if the fluctuation remains small in the triangle

tbrmed by the agglomeration of the three connected elements. If tbur elements remain

connected at the node, the point may be deleted if the RMS fluctuations remain small

in either of the two possible agglomerations from four triangles to two triangles.

When the point deletion algorithm is applied to the advected shear results seen

in the edge swapping demonstration, Figure 4.23, the minimum optimal grid and

associated exact solution, presented in Figure 4.17, are obtained after a single loop

over the domain.

Nodal displacement

A scheme tbr displacing nodal coordinates to minimize RMS of fluctuations about

the node has been presented by Roe[32, 77]. The development presented by Roe

uses the same minimization scheme to evolve the solution as is used to drive the

nodal positioning. That type of fluctuation splitting solver has a central difference

flavor and is not monotonic. The present procedure incorporates the upwind, non-

linear fluctuation splitting algorithm detailed in section 3.2.1 with some of the mesh

movement strategies of Roe. The development also bears some resemblance to the

adjoint equation adaption schemes of Anderson[98] and Venditti[99]. However, the

adjoint schemes seek to evaluate changes in global parameters with respect to an

error estimate computed on a coarsened mesh tbr a finite volume solver, while the

present technique is entirely local and does not employ a coarsened sub-mesh and is

specifically tbr a fluctuation splitting discretization.

At a given node, the nodal displacements are computed as a first step and then

the solution is updated at the new nodal location via a local point-implicit inversion.

In this manner a global mesh movement sweep can be accomplished in conjunction

with a single Gauss-Seidel iteration of the solver. In this section the current node to

be moved is globally numbered node i. Within each triangular element the nodes are
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locally numbered 1 3. Derivatives in y are oinitted when they exactly tbllow from the

derivatives in z.

The functional to be minimized is defined at the node as a sum of contributions

from all cells surrounding the node (equivalent to Eqn. 13, p. 248 in [77]),

1 1

Ti = _ E CTETd_T = _ E Ei¢_r (4.21)
VT@i T

The weighting factor, ET, is a positive scalar, generalizing to a symmetric, positive

definite matrix tbr systems. The thnctional is thus a sum of positive semi-definite

contributions from triangles containing the current node.

The derivative of T with respect to a nodal coordinate is,

COTi ((/_T0_T -- ./. CO_T_ox; - 0%-7+ (4.22)
T

Note that the derivatives in Eqn. 4.22 represent the change in solution values as

the discrete mesh is perturbed, and as such are to be interpreted in the context

of variational calculus, and not as spatial gradients according to the more-familiar

multi-variable calculus.

The minimization of T can be pertbrmed using a fixed-point iteration to tbrce the

derivatives to zero,

0T
x_ +1 " (4.23)

• = X i _X i

OT
Anxi - (4.24)

Oxi

Equation 4.24 can be combined with Eqn. 4.22 in the tbrm of a distribution method

of steepest descent,

Anxi _- ¢2 0Z T ZTd_T00__._T (4.25)

2 OX i OX i

Convergence can be enhanced over the fixed-point iteration by using a Newton

scheme. Expanding the gradient in an approximate Taylor series,

COT n--1 PT '_ CO COT _ An CO 8T n
0 = COXi ,-.o COXi 4- Anxi Oxi COXi 4- YiCOyi COXi

COT n+* COT _ _COT '_ ___._COTn

(4.26)

(4.27)
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leading to the form,

()x i ()xiOYi --1/.._n Xi =_ , 2
O'2 T t)2 T OT

yi oxbow,_ t_J
In [32], Roe suggests neglecting the off=diagonal terms in Eqn. 4.28.

Second derivatives of the objective Nnction are,

02T -402ZT 0ZT0_T (00T)_ _ 0_T]

(4.28)

(4.2D)

OxiOy i -- E aT k 8Xi OYi -_- OXi OYi ) -_- 2 OxiOy i Jr-EG OX i 8y i

T

The fluctuation can be manipulated from Eqn. 4.9 as,

1
[UI(Y3 - _]2, 272 - x3) -- U2(yl - Y3, x3 - xl) -t- U3(y2 -_/1, Xl - x2)]'A

1

= 7 [(U2 - U3)(y,, -x,) + ((/8 - U1)(y2, -x2) + (U, - U2)(y3, -x3)J.A

The spatial derivatives take the tbrm,

o_2 - 7 (_'_- _ )_4'

o¢ _ [8y 2 -- 7 (U3 -- U1)_x

(4.30)

(4.31)

The derivatives of the cell-averaged flux Jacobian will depend upon the particular

flux function. However, since A is a weighted average of three nodal values,

--e --_

OA 1 8A2
--- (4.34)

Ox2 3 8x2

% % %

For uniform advection, oa = (0, -5) and _ (5, 0).= 0. For circular advection,.oLTom _ am =

For non-linear problems, in general,

OA 1 OU2
_i (4.35)

8x2 3 O:r2

8 A 02 3 i 20UJ_ (4132)

j 1 j 1

3 3 foX .-. _ =objl
+ _ u//,_._ + 2_,emAS-;/_/ (4.33)

j 1 .j 1 _2j
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In keeping with the Gauss-Seidel update philosophy, only the derivative of the

solution value at the current node is retained in the last term of Eqns. 4.32 and 4.33.

That is, if the current, node is designated node 2 of the triangle under consideration,

then oe2 _ ova is retained while ou__a___ t212a_ 0 is assumed.
Ox2 Oxi Ox2 -- Ox,e --

Evaluating _ directly from the high-resolution non-linear fluctuation splitting
Oxi

scheme is impractical. Limiters such as Minmod are not continuously ditt%rentiable,

and while the Van Albada limiter is differentiable its use does not lead to a con-

venient explicit form from which to evaluate _ As an approximation to _ for
Oxi " Oxi

the non-linear scheme, derivatives are sought, using linear distribution schemes. Two

linear choices tbr fluctuation splitting are to use a linearity preserving (second-order

spatial accuracy), non-monotonic distribution or an upwind, monotonic first-order

distribution. The linearity-preserving, non-monotonic scheme is of the Lax-Wendroff

type[100], and tends to produce dispersion waves in response to nodal displacements.

This behavior tends to under-predict the change in solution value at the perturbed

node relative to the fluctuation splitting scheme employed herein.

The linear upwind scheme is obtained from the present, fluctuation splitting scheme

by discarding the limiter. This scheme exhibits a dependency on the numbering of

nodes within a triangle. To alleviate this dependency, the approximation to _ is
Oxi

built by looping over all cells connected to node i and renumbering the nodes within

each triangle so that the current node is designated as node 2 of the triangle. It

is emphasized that the linear upwind scheme is not used in the calculation of the

solution, but only employed to provide an estimate of the solution variation with

respect to nodal displacements, providing the tbrcing functions fbr the mesh adaption.

The distribution to node 2 of a triangle using the linear upwind scheme is obtained

from Eqns. 3.22 3.30, with ¢*e = _ and _*_' = _, as,

og+(U1 - C(2) - _-(_J'3 - _J_2) -- ogq-CYl _- (_- - OL÷)_jr'2 -- _-g3 (4.36)

where,

_ a+l<2 1 + sign( )2 3± _ + sign(/ )2 (4.37)

Assembling all contributions from the surrounding cells of the form in Eqn. 4.36 and
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solving tbr the steady state value of the current node yields, with U2 = Ui,

Ui E(c_+ -3-) = E(a+u1-/3-u3) (4.38)
T T

The variation of the nodal solution with respect to nodal displacement can now be

evaluated as,

_Ui E(o_+-_-) = E Ul_ _r3 - [f,i E _(_+ _-
°xi T T T OXi OXi

Recall that the solution at surrounding nodes is held fixed during displacements of

the current node.

The derivatives of the functions in Eqn. 4.37 are defined,

Oc_+ ]" 0 a<0

as
a>O

00- _ j" 9 _<o
(4.40)

'[ o 9>0

Further, Eqn. 3.22 leads to,

Ooe AY 1 OA Oa _x 1 OA

C_X2 -- 2 -_- 2gllZl'c_X 2 Oy2 2 -_- _gll?_l 092 (4.41)

0/3 _ AY 1 A OA 0/3_ ._x 1_ A 0.4 (4.42)
Ox2 2 2gana" 0x2 Oy2 2 _Gna" Oy2

For non-linear problems an implicit relation arises tbr _ and OAa_ 0Ti" One option is to
--+

neglect the derivatives of A in Eqns. 4.41 and 4.42. Another option would be to lag

these same terms from the previous iteration level.

Second derivatives of the fluctuation with respect to variation of a nodal location

tbllow from Eqns. 4.32 and 4.33, again incorporating the approximation ou___x_ oua _ 0,
Ox2 -- Ox2 --

02_ _ 6_A x c_20U, 2 g2 _ _+c_2U2 3 @ c_2f _
c_?j 2 - (U-3 -- U1)-_y 2 -_- e27/_2 (_/2 0_J2 -}- 77?'2"A1_ -_- E_[j _?'j" 0]J 2

j 1

(4.43)

(4.44)
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03220y2- 2 (u3- u1) \ 0322

:, 0%: 3 02X

+ &*_2"Ao,_20112+ _ Gq_ 03220y2
j 1

(4.45)

--e

Second derivatives of A are developed in an analogous manner to its first derivatives.

The second derivatives of the solution at the current node with respect to varia-

tions in the position of the current node can be developed from the first derivative

expression in Eqn. 4.39, again with the approximation ou..__!_ ou8 _ O,
Ox2 -- Ox2 --

02Ui
0327_(0/+- 9-)

T
020/+

T

_20Vi
032,_ ( 0_'+032i 09- ) (020/+

T

2 l( _-

O:r_ ) (4.46)

Oyi _T \ OZi Ozi / - Cl ET \ O,_i_i OziOyi (4.47)

The remaining derivatives to be specified tbllow from Eqns. 4.41 and 4.42,

C_20_

o32_

029

o32_

0A y 1,. 022 020/ (92_ x 1 ^ 022

0322 -H _17Zl 0322 0y 2 -- Oy 2 -H _glT?,l" 0y 2

020/ 10A y 101 x 1 _ 02£

03220112 -- 2 0!12 20x2 + 2gxn1"0_2 (4.48)

Of4Y 1, _ 022 029 OA x 1 _ 022

02fi 1 0_4 y 1 0A x 1 _ 027T (4.49)
Ox20y2 - 20y2 2 0322 293n8"032_2
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__ 1 for which the derivatives are,For :., Roe[77] chooses ST -- s--7'

O ET 1 OS T

Oxi S_ Oxi

0327 sl t, 032_) x_ a327
/--/

_}2,ET 2 8S T 8S T 1 02ST

CO32iOy i S_ 6932i {)Yi S_- 032i0y i

The area of a triangle is,

&-

leading to the derivatives,

0ST

0322

and,

1

2 [3L'l(y2 - Y3) -4-322(Y3- yl) q- 323(yl- Y2)]

1

2 [y1(322- 323)+ y2(323- 321)+ y3(321-322)]

Y3 -- Yl (_ST 321 -- 323

2 0y2 2

(4.50)

(4.51)

(4.52)

(4.58)

(4.54)

The fluctuation splitting node movement techniques are evaluated for the familiar

circular advection problem of the present chapter. One cycle of point deletion results

in the grid and solution of Figure 4.24. The grid contains 70 nodes.

0ST 2 6}ST
- (4.56)

Oxi S_ Ozi

02ST
__ 6 ---(OST'_ 2 (4.57)

0327 s_-t,032_)
(_2E m 6 (_S T OS T

- (4.58)
OxiOyi S 4 8Xi Oyi

are, with Eqn. 4.55,

82ST 02ST O2XT
- - -o (4.55)

0325 Oy_ 03220y2

This choice of weighting emphasizes fluctuations on the smaller cells.

An alternative is to weight all cells equally, with ST=I. Two other obvious choices

for weighting are ST=ST, emphasizing fluctuations on the larger cells, and "ZT = _,

for even stronger emphasis on the smaller cells. The derivatives tbr this latter case
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Figure 4.24: Starting mesh and solution fbr demonstrating fluctuation splitting node

movement schemes. Contours vary on (0,1), with 0.1 increment.
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Figure 4.25: 1V[esh and solution af'ter fbur fixed-point mesh adaptions with fluctuation

splitting. Contours vary on (0,1), with 0.1 increment.
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Figure 4.26: Mesh and solution after four diagonal Newton mesh adaptions with

fluctuation splitting. Contours vary on (0,1), with 0.1 increment.

Applying the fixed-point iteration strategy tbr four node movement cycles results

in the mesh and solution of Figure 4.25. This fluctuation splitting solution shows

a somewhat improved accuracy over the optimally adapted DMFDSFV solution of

Figure 4.16, despite a mesh with fewer than half the number of nodes. The fixed point

procedure is tbund to be a slowly converging technique. To improve the response,

local iterations and/or over-relaxation can be applied. Unfbrtunately, the amount of

over/under-relaxation tbr optimal convergence is problem and grid dependent. For

the results of Figure 4.25, an over-relaxation factor of 10 was used with five local

iterations per global adaption, with _ZT=I.

Employing the full Newton strategy to improve the convergence of the minimiza-

tion procedure has not been encouraging tbr this case. Numerical stiffness due to a

vanishing determinant in Eqn. 4.28 is the culprit, a condition that is likely to worsen

tbr finer grids.

However, the diagonalized Newton scheme proves robust and fast tbr this case,

without the need tbr either local iterations or a tunable over/under-relaxation param-

eter. Four cycles of the diagonal Newton scheme (ET=I) yield the grid and solution

in Figure 4.26. The mesh adaption is clearly more aggressive than tbr the fixed-
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point scheme, achieving slightly improved resolution of the solution at the outflow

boundary.

Point insertion

Additional nodes are created by subdividing edges, in a manner similar to that de-

scribed in section 4.1.1. However, instead of using an edge-based error estimate, the

fluctuations in the cells to either side of the edge are used to trigger mesh refinement.

If the magnitudes of the fluctuations in both cells, or the only cell tbr a boundary

edge, exceed a threshold, then the edge is split by adding a new node at the edge

midpoint.

The various operations tbr pertbrming mesh adaption in the fluctuation splitting

context are combined as a series of sequential steps to tbrm a complete adaption cy-

cle. The steps are arranged in the same order as is enumerated in section 4.1.2. The

complete fluctuation splitting mesh adaption is applied to the circular advection test

problem for a single cycle. The initial mesh and solution were previously shown in

Figure 4.15. The resulting mesh, containing 96 nodes, is shown in Figure 4.27(a). The

associated solution, showing very good accuracy, is in Figure 4.27(b). The fluctuation

splitting solution-adaptive procedure achieves slightly better solution resolution in a

single adaption sweep than the state-of-the-art finite volume solution-adaptive pro-

cedure was able to obtain in three adaption cycles on a mesh with 50 percent more

nodes. Thus, the present fluctuation splitting adaptive scheme is more than three

times as fast as the finite volume scheme which utilizes a posteriori error estimates.

Note, however, that the _optimal' fluctuation splitting mesh from Figure 4.19(a) is

not achieved with only one adaption cycle. In fact, it appears that tbr this variable-

velocity advection problem the local adaption strategy falls short of achieving the

globally-optimal mesh. A retreat is theretbre made from the goal of globally-optimal

mesh adaption, and instead the present method seeks a consistently-improved solu-

tion/mesh combination with each adaption cycle.
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Figure 4.27: Mesh and solution for circular advection problem after a single mesh

adaption cycle with fluctuation splitting. Contours vary on (0,1), with 0.1 increment.

4.3 Non-linear Advection

The two solution-adaptive schemes, a finite volume solver with adaption based on

edge error estimates and a fluctuation splitting solver with adaption to minimize

fluctuations, are applied to the two-dimensional non-linear advection problem of sec-

tion 3.2.4, repeated here,

u +uG+G =o

= u(o,y) =o 1

To avoid the problem of a doubly-defined node at (- 1, 0) and (0, 0), the inflow corners

are set to U = 0, and thus the expansion at the inflow is linearly distributed between

the corner points and the first node in from the corner, along the y-axis.

The DMFDSFV scheme with edge error estimates is applied without modification.

The initial mesh, Figure 4.28(a), contains 121 nodes. The DMFDSFV solution on this

mesh, Figure 4.28(b), is very dill'used and exhibits grid-induced asymmetries. Three

full cycles of solution adaption are applied, nearly doubling the mesh density to
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Figure 4.28: Initial mesh and DMFDSFV solution for non-linear advection case.

Contours vary on (-1,1), with 0.1 increment.

237 nodes, Figure 4.29(a). The solution on this mesh shows a dramatic improvement,

Figure 4.29(b), for shock thickness, shock speed, point of coalescence, and preservation

of extremum in smooth regions. Note, however, that there is some asymmetry between

the expansion fans toward the top of the domain, that the shock is not entirely

straight, and that the compression fan begins to coalesce into a shock at y = 0.4,

instead of at y = -0.5, the correct location.

The fluctuation splitting adaption scheme is also applied tbr three cycles to the

same problem and initial grid. The solution on the initial mesh is similar in char-

acter to the DMFDSFV solution in Figure 4.28(a). The adapted mesh, containing

206 nodes, and corresponding solution are shown in Figure 4.30. The adapted fluctua-

tion splitting solution, using 14 percent tewer nodes, exhibits slightly greater accuracy

than the adapted DMFDSFV solution, particularly in the expansion fan symmetry

and shock coalescence point. One feature that is better resolved in the DMFDSFV

solution is the extrenmrn between the compression and expansion fans on the lower

right-hand side. The fluctuation splitting shock is wider at the coalescence point but

then has comparable crispness to the DMFDSFV result and is a little straighter with
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Figure 4.29: Mesh and DMFDSFV solution after three adaption cycles, non-linear

advection case. Contours vary on (-1,1), with 0.1 increment.
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Figure 4.30: Mesh and fluctuation splitting solution after three adaption cycles, non-

linear advection case. Contours vary on (-1,1), with 0.1 increment.
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increasing y. The fluctuation splitting shock at the outflow is ever so slightly ott_et

to the right from x = -0.5, the correct location.

The DMFDSFV and fluctuation splitting meshes, Figures 4.29(a) and 4.30(a),

have similar character in the expansion and compression fans. The fluctuation split-

ring adaption does not cluster as many points to the shock, resulting in overall 14 per-

cent fewer nodes. This fact that the fluctuation splitting adaption scheme can resolve

crisp shocks without excessive clustering normal to the shock may have favorable ira-

plications when considering fluid dynamic problems with extremely strong shocks in

the vicinity of more subtle, though still important, thatures, such as an entropy layer.

While adapting to the non-linear problem, it became necessary to include an

eigenvalue limiter in the fluctuation splitting algorithm to prevent expansion shocks.

The one-dimensional eigenvalue limiting of Harten and Hymen (see section 2.2.2) is

extended to multiple dimensions by searching tbr expansions in the _ and 7] directions

separately. Combining Eqns. 3.25 3.29, the artificial dissipation terms can be recast

aS,

<5'_ = -I_I/k_U + sign(c_)M_, _'" = -I/31/_N,U - sign(/3)2_/_ (4.59)

lal and 1/31are then limited as in Eqn. 2.46 with the parameter c (Eqn. 2.47) defined

as,

c(c_) = _ max 0, _l_tl.(A - A1) , gl_?_l.(A2- (4.60)

respectively.

As a final note to this section, the fluctuation splitting solver is applied to the

adapted mesh previously used with DMFDSFV, from Figure 4.29(a). The fluctuation

splitting solution on this mesh is shown in Figure 4.31, as a demonstration that the

fluctuation splitting solver still works on a mesh adapted to solution curvature.
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Figure 4.31: Fluctuation splitting solution on curvature-clustering mesh. Contours

vary on (-1,1), with 0.1 increment.

4.4 Advection-Diffusion

The two solution-adaptive schemes are applied to the Smith & Hutton advection-dif-

fusion problem of section 3.4, starting on the 1928-node Mesh C. The finite volume

adaption with clustering based on edge error estimates is applied without modifica-

tion, resulting in a 619-node mesh. The RMS ditthrence between the solution profile

at the outflow boundary for the adapted DMFDSFV result and the grid-converged

solution profile from the previous chapter is listed in Table 4.1 along with the RMS

difference for the DMFDSFV solution on the unadapted mesh C. Two cycles of mesh

adaption have been performed, reducing the required number of nodes by two-thirds

while improving the RMS outflow resolution by 28 percent.

The incorporation of physical diffusion into the adaption strategy utilized with the

DMFDSFV Fluctuation splitting

adapted 0.0208 0.0063

unadapted 0.0288 0.0068

Table 4.1: RMS difference of solution outflow profile relative to grid-converged result.
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fluctuation splitting scheme requires some modifications. A check on the magnitude

of the diithsive fluctuations in the surrounding cells is added to the criteria tbr deleting

a node. For edge swapping, the RMS of the diffusive distributions are added to the

RMS advective fluctuations to determine the optimal connectivity. An edge is split,

adding a node, if the diffusive distributions sent to the end nodes of the edge exceed

a threshold value.

For nodal displacements, the advective fluctuation on a cell, Eqn. 4.31, is modified

to include the dittusive distribution sent to the current node, 0 v defined in Eqn. 3.51,

repeated here,

3

Cg_- 4ST#___. 5_(j¢_j.izg (4.62)

The additional derivatives to be added to Eqns. 4.32 and 4.33 take the tbrm,

o_ _ _ [(_ o_Oy2 4ST Oy2

A A 2

STo_2] _ U//2_j._2 + e_oL__ + (_ - _l)(U_- v_)
j 1

(4.63)

lOST) _ e_ou_ ]ST (_Y2 Ej 1 Ujgjg2etJ'lz2 _- 2--Oy 2 _- (Y3 - Yl)(U1 - U3)

(4.64)

where the assumption ou_.___l_ o_ _ 0 has already been applied. The second derivatives
Ox2 -- Ox2 --

of the diffusive distribution follow as,

02¢_ pe_ 02u,_

Ox_ 4ST Ox_
2

+__

( _ os_ 1 op) [e_ov2 1+ _Io_2 4x, o_2 o-_ +(_-_)(U1-U3)

1 o2_ _ 02ST _ (OS_'l _,cSe/2_j.e_2
4ST Ox 2 ÷ 4S_- Ox_ 4-S_ _ OX2 / j 1

(_ op 1 0_'r)0_: (4.65)-_- OX2 ST 8X2 ] OX2
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Oy_ 4ST 0y2 2
( P OST 10P) F'2°U2 ]+ 4x_oy2 4ST_ [qT + (Y3--yl)(UI- U3)

4ST Oy_ + 4S_- Oy_ 4-S_ _, Oy 2 ) j 1

(_ Op, lOST) O(b_ (4.66)+ Oy2 ST Oy2 Oy2

2 v0 ¢2
0z2092

1 O# O#+ 4FST Oz20y2

62- Jr- (Y3 -- Yl)(_TI -- []'3)4x, o_20w 4_ 0_2 47T0G) 0W
3

l 02fit ]_ 02ST p, 0ST 0ST "_

4ST Oz20y2 + 4S_ Oz20y2 4-S_ 02£20y2 ] j 1

(_ 0p, 10ST) 0¢_ (4.67)Jr- Oy2 ST Oy2 02£2

The derivatives of the cell-averaged diffusion coefficient scale like,

The variation of the dependent variable at. the current node with respect to the

nodal position also needs to be modified to account, tbr the diffhsion terms. The

steady-state value of the current node, Eqn. 4.38, now becomes,

U/E 4_+ - fi- + 4ST ] = E a+U_ -/.3-0-3 - 4_T (Ulfl_Zl + UaQfz3)'fti (4.69)
T T

and _he variation, Eqn. 4.39, is replaced by,

02£i ET (0_+ -- /_- mr- -_TT] : T_ {Ul-_x/ .

{ 0(Y + Off- 62 0/_ e2/_ 0ST )- u__ <o2£_ o2£_+ (4.70)4ST 02£i 4S_ OXi
T
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The second variations of the dependent variable, Eqns. 4.46 and 4.47, become,

02Ui
Ox_ _ @+- fi- +

r O2c_+ ., a2/;-

T

4ST// -Ui E _ c_+ -- fi- + 4ST /
T

2_i(_T1 -- U3)(x3 - Xl)_ (?-ST)]

o( (4.71)

( 4ST]-20xiOyi (a+ - fi- + -Ui _ a,+ -/d- +
4ST]

T

Oxi _ c_+ - +4ST] +E Ul oziOy i [73
T

-- E { gi(Ul - U3) [ (x3 - Xl)_ i (4@T) -_- (y3 - yl) '_ (4@T)] }
T OXi

cgyi _ °:+ -- fi- + 4ST/

The RMS differences of the solution profiles at the outflow boundary relative to

the grid-converged result are in Table 4.1. Although the fluctuation splitting solution

on the unadapted 1928-node mesh is good, one cycle of mesh adaption reduces the

number of nodes by a factor of 2.8 to 695 nodes, while still producing some (7 percent)

improvement in accuracy.

4.5 Recapitulation

Current state-of-the-art for anisotropic unstructured mesh adaption based on a poete-

riori error estimates is implemented in an edge-based structure in conjunction with a

finite volume solver. This type of adaption results in meshes where the node densities

are clustered to regions of high curvature in the solution. Significant improvement in

solution accuracy is verified using this technique on scalar model problems.

Recognizing the remarkable property of the diseretized fluctuation splitting scheme

that multi-dimensional advection can be solved exactly when one edge of each cell



110 CHAPTER 4. SCALAR MESH ADAPTION

is aligned with the characteristic direction, a different mesh adaption scheme is pro-

posed. Retaining the mechanics tbr pertbrming only local operations, i.e. point inser-

tion/deletion, edge swapping, and nodal displacement, a solution-predictive approach

is chosen in favor of a posteviori curvature clustering. The concept of aligning cell

edges with characteristic directions is generalized as a minimization procedure to al-

low extension to diffusion problems and systems. Extending this process to non-linear

problems leads to a multi-dimensional implementation of eigenvalue limiting.

It is seen that while perfbrming a series of local optimizations does lead to glob-

ally improved solution accuracy and reduced grid sizes, in general a truly globally

_optimal' mesh is not achieved in a reasonable number of adaption cycles. However,

the solution-predictive adaption in conjunction with the fluctuation splitting scheme

does provide moderately more accurate solutions on smaller meshes tbr comparable

number of adaption cycles versus the DMFDSFV solver with adaption driven by error

estimates.

Considering extensions to three-dimensional hypersonic flow applications, perhaps

the most promising diff?rence between the two adaption strategies lies in their treat-

ment of shocks. For the a posteriovi adaption, the number of nodes clustered to the

shock grows as the shock strength grows, which could lead to a bow shock dominating

the adaption for hypersonic problems. In contrast, the minimization of fluctuations

tends to merely align the grid with the shock, leaving the points outside the shock

largely unaffhcted.



Chapter 5

Two-Dimensional Systems

5.1 Overview

The fluctuation splitting and DMFDSFV discretization schemes detailed in chapter 3

for scalar advection-ditthsion problems are extended in the present chapter to the

system of equations governing the compressible fluid dynamics of a dilute, ideal gas

fbr two-dimensional and axisymmetric flows. First, the mass, momentum, and energy

equations tbr an inviscid fluid, termed the Euler[86] equations, are fbrmulated in both

the fluctuation splitting and finite volume contexts. Then, the system is extended to

include the eft_cts of viscosity and conductivity as the Navier[87]-Stokes[88] equations.

The tbrmulation of the upwind fluctuation splitting scheme fbr the two-dimensional

and axisymmetric Navier-Stokes equations is a leading-edge research area.

The chapter concludes with verification and validation of the schemes. A brief

discussion of the coding strategy is included, immediately tbllowed by a verification

of the code using the test cases and methodology of Shinghal[101] and Roache[102].

The validation cases range from the incompressible flat-plate to a Mach-17 cylinder.

5.2 Inviscid Formulations

Spatial discretizations are developed tbr the Euler equations using both the DMFDS-

FV and fluctuation splitting schemes. The two-dimensional development is extended

111
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to cover axisymmetric problems through the additional appropriate radial derivatives,

treated as source terms.

The non-dimensional system of' equations are taken from appendix B, Eqn. B.9,

with _v = B ,_ = 0 as,

+ = (5.1)

with,

u =
pv

pE

pu pv ]• = pu 2 + P puv

L pug pvg I

B '_ = (0, O, P,O) T (5.4)

7 is a logical switch between two-dimensional (7 = O) and axisymmetric (w = 1)

equations and w_ = 1 - 7 + wy is toggled by w between 1 (w = O) and y (7 = 1).

5.2.1 Finite Volume

Integration of the dependent variables over the control volume about node i is per-

tbrmed as,

/_ _iTaW t d_ = (5.5)

i

For two-dimensional _a = 1, while tbr axisymmetric _ can be either taken as

_ = Yi, tbr mass-lumping to the node, or as the y-value of the centroid of _i.

The axisymmetric source term, B', is simply evaluated at the node as,

B'd_2 = SiB' i (5.6)
i
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The discretization of the fluxes tbllows the development of section 3.2.1, with the

only modifications being the inclusion of Wa (equal to 1 tbr two-dimensional or the

y-value of the quadrature point on the face for axisymmetric) and the definition of

the artificial dissipation in Eqn. 3.8, which is,

= IX'<(UR--UL) (5.7)

where by convention the right state is to the outside of the control volume while the

left state is to the inside.

In an analogous manner to the conservative one-dimensional linearization of sec-

tion 2.4.1, the parameter vector, Z = v/-fi

= 7(Zkl + ZR), to provide the quantities,

[1, u, v, HI T, is linearly averaged,

a 2_ 2_ kr - 24 (5.8)= el' = el' z7

and the Roe-density remains from Eqn. 2.64,/5 = x//-fi-_-pR.

The projected flux Jacobian is decomposed as in Eqns. B.37 B.40,

(>9)

with A given in Eqn. B.38 and X given in Eqn. B.40.

The product X-I(ua - UL) is expressed analogously to Eqn. 2.68[23],

1

:_:-I(uR- UL) ---- x-ldu-- _2

2_?dp- 2dP

dP + _5 dl; I

dP - [_6 d); ,/

(5.1o)

where the projected velocity is V = lp-_z and the averaged speed of sound tbr a perfect

gas is,

_2 ~ )a_ = (_/- 1) H + _ (5.11)
2
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5.2.2 Fluctuation Splitting

In the fluctuation splitting context, the parameter vector is taken to vary linearly over

each element. The assumed linear variation limits the scheme to second-order fbrmal

accuracy, but will allow tbr a positive tbrmulation when combined with a non-linear

distribution. Caraeni, Caraeni, and Fuchs[103], basing their work on the published

fbrmulations from the present report, use a quadratic variation of the parameter

vector to derive a fbrmally third-order scheme. That scheme, however, cannot be

positive, a critical requirement fbr the robust computation of strong shocks.

For a perfect gas, changes to the conserved variables can be related to changes in

dU = UzdZ (5.12)

2ZI 0 0 i 1
UZ ---- [ 1Z3Z2 /-Zl01 Z10 1 (5.13)

7Z4 --7--Z2 --_7!/1Za 7Z1

the parameter vector as,

Integration of _v_Ut over an element leads to a mass matrix,

]_ _U_ d9 = _i w_UzZt d9 (5.14)

If mass-lumping to the nodes is employed, introducing temporal, but not spatial,

errors, Eqn. 5.14 can be distributed to the nodes as in Eqn. 3.14, so that the sum of

all contributions to node i equals _v_SiUi_.

While some authors insist on upwinding source terms[3, 104], the present analysis

considers an upwind distribution to be inappropriate fbr the axisymmetric source

terms, which arise from purely geometric manipulations. The axisymmetric source

term can be distributed to the node in a mass-lumped analogy as,

m,_iSiUi_ +-- cvSiB' i (5.15)

which is equivalent to the finite volume treatment of Eqn. 5.6. A modification of this

distribution is to send contributions weighted by the averaged values,

9--daiSigit +-- U_7-_'_-BT Jr- rOE (5.16)
d
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I 2
W W

Figure 5.1: Subdivision of triangular element into three quadrilateral integration

areas. Dashed lines are the median-dual mesh.

A more rigorous treatment integrates the source term analytically, based on a

linear variation of the parameter vector. The only non-zero inviscid source term is,

B_ =P-7-1 (7 Z1Z4 Z_+Z_)2 (5.17)

The integration over the triangular element is divided into thirds along the median-

dual boundaries, as in Figure 5.1, so that,

t_ = t2l + t_2 + t_8 (5.18)

The subintegrals are then distributed to the nearest node. Notice that the subdivided

integration elements, t_l-a, are quadrilaterals, whereas the original element was a

triangle. The distribution formula is thus,

+-- _ f B' d_i + COE (5.19)U_Tai Si g i t

JR i

The integration of the source term over t_i is expanded in detail in appendix C.1.1.

Integration of the inviscid flux is pertbrmed as,
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The y-component of' the flux fhnc_ion can be written in terms of' the parameter vector

aS_

F iy

Z1 Z3

Z2 Z3

Z3Z4

(5.21)

A linear variation of the parameter vector over a triangular element can be represented

as_

1 Z
z(x, y)= 2s_c_j_j[(x- _)(y_ - yi)+ (y- y_)(_- _)1 (5.22)

where cijk is the cyclic-permutation summation operator. The linear variation can

also be written in the element-local (_, t]) coordinates, referring to Figure 3.3, as,

] (2 3 -- Z2)l ]Z(_,7]) = Z 1 q- (2 2 - Zl) _ Jr-

(5.23)

The domain is on 0 _< _/ _< _ and 0 _< _ _< /_3. The Cartesian coordinates map

similarly,

1 A 1 A
2g(_ 1]) : ,/;"1 Jr- -- _ Jr- -- 7]

_"3 _X gl fix

1A 1A

(5.24)

(5.25)

Some general integration rules can be developed tbr linear variations over the trian-

gular elements:

_ = sT (5.26)

_ xd_ = ST2 (5.27)

xy dt_ = ST2_ 2fj - -_ J _ z.jyj (5.28)
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The cell-averaged value is,

R

Xl+X2+X3 _ 1_,
= 3 -- 5 _ xj (5.29)

:?

j 1

The last term of Eqn. 5.20 is distributed to the nodes in a manner similar to the

source term,

+- --w f F i' d_i + COE (5.30)_aiSiUit

i

The integration rules from Eqns. C.16 C.20 are used to evaluate the integral, leading

to,

E 31/fl ZiZ3d_i = S--I-I 1421Z3 ÷11(Z1_2a + 21Zsi) ÷ 9Z1_Z3{ + E ZIjZa J (5.31)
144 j 1

for the continuity equation.

directly from Eqn. 5.31.

The remaining term to evaluate in Eqn. 5.20 is the inviscid fluctuation,

= -/_ =_9.P _d_

_1_3/_2ST ( -_i )

_,_Ji_ (_1,._A_z-__ 4 ._

The integrals tbr the other governing equations follow

(5.32)

-+. --_

where dF _ = Fz dZ and,

22

F Z =
0

0

Z1 0 0

,_ _2 -z-:AZ3_ _-!Z1

Z3 Z2 0

Z4 0 Z2

_3 0 Z1 0
:FYz= Za & 0

17 -L'3 _2_-iZ 1

0 Z 4 Z 3

(5.33)

(5.34)
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The integration rule Eqn. 5.28 allows for the direct evaluation of Eqn. 5.32 as,

1

1

-}- -_ag3fi3 •

( )]1 = 1 a _J_ A_Z_z-a Fz- 5 _--71,z_

( )]1 _z 1 _7_-----c'_" A_Z

Noting that. A = Fz Z O and,

1
Zu -

2,/5
1

--V

-H + (7- _)(_' + .')
0 0 i]2 0

0 2

-2(_r- 1> -2(_,- 1> 2,r

with the tilde-averaged quantities defined as,

0 =u(z) A_U = U2 A_Z A,U = U2 A,_Z

(5.35)

(5.36)

(5.37)

leads to the fluctuation expressed as,

' E1(.it._)]
j 1

= Ce+ ¢7

(5.38)

Equation 5.38 includes the approximation,

Rj -_ Pzjz_ (5.39)

A transtbrmation of variables can be made to the auxiliary variables so that,

¢ = Ow(_ (5.40)
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with Uw given in Eqn. B.61. The similarity transtbrmations developed in section B.3

lead to,

( ±_ 2_ 1 _

¢t-_ _-5 _o

_--_o(__w +__Tw)

1

1

+ _faCza"

_Tw

A_W (5.41)

with J[ = WuAUw and,

A_W = W_? A_U = W2 A_Z A_W = W_) A_U = W2 AvZ (5.42)

where Wu is given in Eqn. B.62 and,

Wz = v/-fi F v 11]
2 _ ,_ q,_ ,h

/-; _ o- 0 1

_'-_H -_-_ -_-_ _/L 7 3' 3'

[_ _ _ _

-Z2 Z1 0
-Z3 0 Z1

'lz4 7-1Z27 -7-1Z37

using the relation,

_zl]

0]0

_-_Zl

0, 2

h = %T -
7-1

The projection of _[ has the simple tbrm, derived as Eqn. B.54,

(5.43)

(5.44)

[i o0 F

a 2 it a 27tx a 2 ?,ty

(5.45)
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where the projected velocity is F = _.._7. The generalized advection speeds are,

( )]1 _ 1 ____%_[_ (5.46)

( )]1 ~ 1 _---_J"Ai (5.47)
faA

= --_3"

J[j = W_)AjUw

incorporating the approximation,

(5.48)

Linearity preservation for second-order spatial accuracy is obtained by limiting

the fluctuations componentwise,

_f = @+ 4_._(QN)= @ (1-_ (_)) (5.49)

_' = _ - _' _(#j) = 4;J(_- _ (#_)) (5.50)

where the second equalities hold for symmetric limiters. The limiting ratio is,

c45- _f (5.51)

In vector form, Eqns. 5.49 and 5.50 can be written,

with

(_*_ =D_ _ (5.52)

_*_' =D_ ' (5.53)

Da =diag(1-f_(@j)) D_=diag(1-f_(Qj)) (5.54)

Upwinding is achieved through the introduction of artificial dissipation

05 = sign(c_)05 = -_M_D_M2_[c_[ A_W (5.55)

05 = sign(fl)05 = -_M_D'IM_I[fl[ A_W (5.56)
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where Ms = sign(or) and M_ = sign(/3). The absolute values of the generalized

advection speeds are developed using the fbllowing decomposition, which is exact for

the two-dimensional equations but approximate tbr the axisymmetric form,

(a.a7)

where A and X are defined in Eqns. B.38 and B.57, respectively. The absolute value

is then defined as,

I_l = _.-i'[AI x-1 (5.58)
Z

Expressions fbr the sign of the generalized wavespeeds are developed from,

loci=M_c_ (5.59)

Ms = _'IAIA-1_'-1 (5.60)

leading to,

MO_

-sign(9_)

0

0

0

Ms = sign(_)/ if' I_1 > a (5.61)

o oily2 ~
rh sign 02_) -n_n_sign(9_)

_rz_rzYsign ('_a) x2 . ~_h s_gn(V_)

_n_ an_

if I_)_1< a (5.62)

__+

where 12_ = I_l ._z Similarly, defining Ifll as,

2
(5.63)

leads to,

sign(_)_)
0

0

0

M_ = sign0)/j)I

0

y2 ~
rh sign(V_)

an_

o o]
X 2 • ~_ s,gn(V_) _|

< oJ

(5.64)

if 19vl< a (5.65)
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where ]?s = fla'V. Ms and M s have the property,

M2* = Ms M}71 = M s (5.66)

Eigenvalue limiting for the suppression of expansion shocks can be introduced into

the expression tot" ]c_], Eqn. 5.58, by limiting 1[_-11= 1[\21 = IVl, IA3I = I1) + al, and

IX41= IV- _1 in the manner of Eqns. 2.46 and 4.60. If the limited eigenvalue is

expressed as,

IXl,gm=IAI+ AA (5.67)

then the additional artificial dissipation tbr eigenvalue limiting in the _ direction to

be added to Eqn. 5.55 is, with A + = 7(AAal + AA4) and A- = 71(AAa -- Aa4),

while the eigenvalue limiting in the 7/direction takes the tbrm,

(5.68)

IrA10 0 01
7_3 A -_-7_3 z._./._A277._77,Y(/__.\-- -- /--'_A2) _A-

q-_:Ta/_2 x 2 + y2

[o !

atriA- atriA- A+ J

The fluctuation is distributed to the nodes using a simple extension of the scalar

distribution, Eqns. 3.30 and 3.31,

1

SlWlt _-- "_(0 *g -- _fi) -]- CO/_

&u_, +- _(4,*_+ 4/) + (4,*"+ 4,'")+ coE

1 4S&u_, *- _(4,*"- ) + cos (5.70)

or in a more compact form,

1
[i(a- i)(_*_+ (-1)_0 '_)+ (-4 + 5_- i_)(0"_'+ (-_?¢")]SiUi_ +-

+ coz i = 1,2,3 (5.71)
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where Eqn. 5.40 is used to define,

Ow&*__ _ _,_= , 0'_ = Uw¢ (5.72)

= uw0 , = uw0 (5.73)

At the 15 _hAIAA Computational Fluid Dynamics Conference Prof'. Philip Roe[105]

suggested including the radial distance, _a, within the definition of the parameter

vector. Further reflection reveals that _ is the proper term to consider. This

approach has the potential to avoid some of the explicit integration by parts in this

section and allow for cleaner expressions for many of the combined axisymmetric/two-

dimensional relations, such as Eqn. 5.35. However, the flux t_nction F is no longer

just a thnction of state but also of position, so that the gradient can no longer be

expanded as V.F = Fz'VZ, which could lead to complicated expressions again.

Also, the consistent incorporation of this redefinition of the parameter vector into

the viscous discretizations is not straighttbrward due to the difficulty in expressing

all terms as explicit quadratic products of the parameter vector.

5.3 Viscous Formulations

The complete set of governing equations for the motion of a two-dimensional or ax-

isymmetric viscous fluid are presented in appendix B as Eqn. B.9,

_aUt + _.(_i) = V.(_) + =B ,_ - =B ,_ (5.74)

Integrations of the conserved variables, inviscid flux, and inviscid axisymmetric source

proceed as developed in section 5.2.

Integrating the viscous flux over a triangular element leads to the viscous fluctu-

ation (see Eqn. 3.47),

_ = .£ ¢.(_j'_)d_ (5.75)

The nodal distributions are developed in a finite element sense by integrating by parts

as the extension of Eqn. 3.49,

0 v =_;vi_'v._dF- y_a_'V.Vvid_ (5.76)
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For interior nodes the boundary integral in Eqn. 5.76 will sum to zero and the volume

integral is integrated analytically fbr a linear variation of the parameter vector,

3

_Z -- 2_ T Zjgj_lj V_) i -- 2S T

q_i -- 2ST

The viscous flux is,

@aCi _,

2

\,_vir + ?r

with the shear-stress tensor defined,

Struijs[34] et al. have shown that derivatives of primitive variables can be consis-

tently represented in terms of the parameter vector gradients as,

vv = ve vz (5.81)

where,

VZ z

2Z1 0 0 0

z2 1-- 0 0
Z] Z1

_Za 0 1 0
Z 2 Z1

T2L-_ Z4 '7 --T2E-_ Z3 T2@ Z1

(>82)

and,

z_
22

[2124 - 7

(s.8a)
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Further, the consistent temperature gradient is,

VT fir _2R Rfi 2 _ -/5

The viscous fluctuation is then distributed to the nodes as in Eqn. 3.52,

(5.84)

&u_, +- {p_+ coE (5.85)

An alternate approach to integrating the viscous flux is obtained by using the

divergence theorem,

where _li is the generalized control volume containing node i, with two-dilnensional

area equal to Si, and Fi is the boundary of t_i.

Haselbacher[106] ct al. have recently presented an approximate treatment for in-

tegrating Eqn. 5.86 on two-dilnensional unstructured grids, which they relate to the

thin-layer approximation of the Navier-Stokes equations presented by Gnoflb[161 for

structured grids. The method preserves positivity for the Laplacian and is transparent

to grid topology.

The development begins with the expression,

0

, + Vv. ]
_v.i_ + [v.v_ + _u.

.--' --' i -+ 2 --' _ --' _]¢_+ ,, _=(_v)(v._O + _vv .¢_- _Vv.t + vV_.t
6"

J (5.87)

where [ is a tangent vector with components (-rz y, nX). Haselbacher's approximation

neglects all tangential terms and approximates __ nxvu.fi + nYVv-h. Using the

notation u_ = Vu.fi, etc., and including the axisymmetric terms gives the approxi-

mation,

V

#.¢ ___.+_ + =- (5.88)
Y
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leading to,

( (0 ))
A Nrther simplification aligns ft with the nearest mesh edge tbr faces of F on the

interior of the domain, so that terms such as _,_ reduce simply to the diff?rence in

nodal values divided by edge length. Also, cv_ is chosen to be the midpoint of the

edge.

Including one more approximation, namely replacing the length F of the median-

dual face with the length of the associated containment-dual face, has the effect of

canceling some of the errors tbr very high-aspect-ratio cells introduced by assuming

_t is edge-aligned. For low-aspect-ratio cells, the containment dual is the same as the

median dual and the true f_ is closely aligned with the mesh edge. This implementa-

tion is similar to the suggestions of both Barth[22] and Haselbaeher[1071, yet retains

the global rnedian-dual implementation required by a distribution scheme.

The viscous axisymmetric source term has only one non-zero entry,

B_, _ 2#

Integrating using the Haselbacher approach leads to,

B:__ - --: d_
i i i

Mass lumping to the node fbr the first term yields,

/_ pv vi

while the second term is evaluated at edge midpoints.

(592)

5.4 Boundary Conditions

5.4.1 Weak Formulations

Boundary nodes may be updated either strongly, where the nodal solution values are

simply assigned a priori, or weakly, where the solution values at the boundary nodes
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Interior

Exterior

= Boundary state _-- = Reconstructed state

Figure 5.2: Weak implementation of finite volume boundary condition tbr node 0,

imposed by specit)ing external state. Quadrature points denoted by X's.

are relaxed in time using the same fbrInulations as tbr interior nodes.

For finite volume, the weak boundary implementation specifies the solution state

to the outside of boundary faces, then allows the approximate Riemann solver to

construct the appropriate fluxes through the boundary faces. See Figure 5.2 tbr an

illustration of the weak finite volume boundary condition. The solution state to the

inside of the boundary face can be set from either a first- or second-order reconstruc-

tion from the node. For some cases, second-order reconstruction to boundary faces

has led to localized oscillations in the solution convergence at boundary nodes.

Weak fbrInulation of the fluctuation splitting boundary condition is developed

using fictitious "ghost" nodes, one fbr each boundary node, as shown in Figure 5.3.

Considering the scalar case, the positioning of a ghost node such that the edge con-

necting the ghost and boundary nodes is parallel to the advection velocity results in

a boundary fluctuation of,

1

_0 = _g01A';_01(_)o - Vo) (5.93)

fbr node 0 of Figure 5.3. Observe that this fbrmulation is independent of the physical

location of the ghost node, so the ghost node can be chosen to be infinitesimally close

to the boundary node it supports. The solution state at the ghost node remains to
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dr0, fl are ficti-

tious nodes tbr

sending bound-

ary fluctuations

to nodes 0 resp 1.

Figure 5.3: Weak implementation of fluctuation splitting boundary condition, im-

posed by specif?Ting external state at ghost nodes Jo, fl.

_bco -- _ao g01Abc 0 "_?_01(Wf0 - W0)
2

be specified, and can be varied node-to-node. The associated artificial dissipation is,

0_c0 = sign(A'_z01)0bco (5.94)

and the resulting distribution is,

1 /
SoUo + Ohio)+ (5.95)

Since no account of the ghost cell area is made in forming the dual area on the LHS

of Eqn. 5.95, a scale factor on [1, 1] can be applied to the distribution.

The extension to systems follows by analogy. The boundary fluctuation is defined,

(5.96)

Obco = sign(.._.bc0-_t01) _)bco

with the artificial dissipation,

(5.97)

Additional dissipation tbr the suppression of expansion shocks is added to Eqn. 5.97
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fbllowing the Ibm: of Eqns. 5.68 and 5.69 as,

[i 0 0 0]_t01rt01(AA 3 + -- __e01 Yl01(z.__A3x2 __ z._._&4)_ x Y L-'_A4 ) 7_):(_A3a L-'_A4 )

-5- x Y 2
71_0171:Ol(Z2kA3 _- /nkA4) 7/:Yl(L-_A3 -_- /_A4) _(_l'k3- /_A4) (wf0 W°)

aYl_I(L--_A3- z--/--_A4) aTlYl(L--_A3- z---_A4) (z---_A3 _- _--_A4)

(5.98)

The distribution to the boundary node is then fbrmed as,

SoUo_ +-- _Uw(_b6_ o + _b6_o) + COE (5.99)

This system treatment is only approximate, as the cross-fluctuation does not van-

ish when l_ll Jo0, as in the scalar case, but reduces to the tern:,

0 01
0 0 n.fo

0 0 n_.oJa2it xfo a27t_'o

(5.100)

Strictly, there should be some cross-coupling with the neighboring boundary nodes.

However including the tern: from Eqn. 5.100 requires explicitly locating the ghost

nodes, which can be impossible for certain geometries.

The distribution to node 1 is formed analogously, substituting 0 for 1 in Eqns. 5.93

5.100.

5.4.2 Boundary Types

The freestream boundary condition is enacted by specit}'ing a complete, constan_

thermodynamic state and velocity vector. By using the weak boundary entbrcement,

this one boundary condition covers the four permutations of subsonic or supersonic,

inflow or outflow.

The inviscid wall boundary is implemented by mirroring the primitive variables,

either across the face for DMFDSFV or at the node tbr fluctuation splitting.
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Viscous walls define a no-slip velocity and a specified wall temperature. The zero

velocity at the wall causes the viscous axisymmetric source to be zero.

Both the thll viscous flux and the approximate thin-layer flux of Haselbacher

reduce to,

P__ - R_ 0, _, _Tn (5.101)

at a wall, since lP, V4P, and l<_.f_ go to zero. Defining the heat transfer into the wall

according to Fourier's law,

qw - T_ (5.102)

and the wall shear stress,

- _ L (5.103)
W _Coo

allows the Eqn. 5.101 to be written as,

--e

SV.¢_=- [0,_, s_] (5.104)

where the minus sign results from the choice of an outward unit normal, i_, to the

control volume, which points into the wall at a boundary.

The solid wall is entbrced weakly, by specifying the wall shear that will drive the

flow momentum to zero and the heat flux that will drive the solution temperature to

the desired wall temperature. An advantage of this weak approach is that wall heat

transfer and skin friction are solved for directly, rather than as a post-processed least-

squares reconstruction. Using an explicit update, the wall heat flux can be isolated

as,

1 [=_ (u4 - c:1_(fw))+ RHS_+_] (5.105)q_ - =a}-]F_ L At

__ 1 Fw_S U i+v] (5.106)<_ - _Erw [/-5-/-.( _'_) + RH_,_

Similarly, the wall shear is,
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On the axisymmetric axis the control-voluIne centroid tbr _ in Eqn. 5.5 is used for

the temporal evolution, to avoid a singularity in the nodal update. The DMFDSFV

axis condition is implemented by setting all fluxes to zero through the axisymmetric

axis. For fluctuation splitting the axis is treated in the same manner as an inviscid

wall, but with the radial term set to the cell centroid to ensure the numerator in

the distribution contribution goes to zero faster than the denominator from the LHS

time evolution. These implementations of the axisymmetric axis are observed to

work well in practice except at the stagnation point on the axisymmetric axis, which

is a singularity in the flowfield as well as a mathematical singularity. The deficiency

observed with the weak boundary implementation at the axisymmetric stagnation

point is a lack of preservation of massflow, where the velocity vectors sometimes

allow a slight leak into or out of the domain, depending upon the particular flow

conditions.

5.5 Temporal Evolution

Solutions at the nodes are updated using an explicit tbrward-Euler LHS. A Jacobi

relaxation strategy is tbllowed with local time stepping.

The CFL (Courant[108] et al.) criteria fbr explicit schemes is adapted tbr use with

the node-based unstructured scheme. The inviscid timestep is defined by the most

restrictive time for signal propagation, at the eigenvalue speeds, between adjacent

nodes,

I}_ "r0il÷ ao = rain _ - ....I ,o- oil+ a0IVoill

where the current node is node 0 and i takes on nodal values for each distance-one

neighbor of the current node.

The viscous timestep restriction is taken to be an approximation based upon the

positivity analysis tbr the scalar case, Eqn. 3.54, assuming order-1 Prandtl number,

4SoPoR_
At0 = (5.108)

7- 1)ET 5
ST
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The stability and convergence of axisymmetric solutions is fbund to be enhanced

by scaling the timestep fbr points near the cylindrical axis by the maximum of either

the node height or the square root of the median-dual area.

The more restrictive of the inviscid or viscous timestep is used to scale the nodal

update.

5.6 Verification and Validation

5.6.1 Coding Strategy

The code is written using a literate programming[109] style that blends source code

(written in C) with documentation (I_TEX) in the same file. Maintaining close physi-

cal proximity between the code and documentation aids the debugging process. Mod-

ularity is emphasized, with individual functions being verified using sample inputs

prior to being linked with the main driver routine.

"Verification of the complete solver is perfbrlned in stages using a methodology

derivative of Singhal[101]. A variety of canonical cases are constructed, including

grid distortions, that are designed to exercise combinations of the various functions

that comprise the complete solver. Validation is the application of the solver to

complex flowfields with comparison to benchmark data.

5.6.2 Inviscid Verification

Distorted mesh

The first verification case simply passes a uniform flow through a distorted grid, with

success being the preservation of uniibrmity to at least six significant digits. The

domain is initialized to stagnant conditions with freestream flow impulsively applied

at the boundaries. A variety of flow angles were tested on -180 ° _< AOA < 180 ° tbr

subsonic, transonic, and supersonic Mach numbers. Regular, high aspect ratio (100),

skewed (2 ° < 0 < 175°), and randomly distorted (Figure 5.4) meshes with 121 nodes

were used. Initial runs were instrumental in refining the treatment of eigenvalue
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Figure 5.4: Sample randomly distorted mesh used tbr solver verification cases.

limiting tbr fluctuation splitting as described in sections 5.2.2 and 5.4. All final runs

were successful tbr both DMFDSFV and fluctuation splitting.

Converging Mach streams

Thermodynamic routines are verified by considering converging Mach streams, in-

clined at +10 °. The upper stream is at Mach 2.3 while the lower stream has Mach 1.8.

The two streams have matched densities but a temperature ratio of 1.0812, resulting

in a horizontal slip line behind the oblique shocks. A complete description of the

analytic solution appears in Figure 5.5 and Table 5.1.

A sequence of tbur meshes, with a refinement ratio of 1.5, is considered. The

meshes are triangulated from 16 x 16, 24 x 24, 36 × 36, and 54 × 54 grids. The

triangulated 16 x 16 grid is shown in Figure 5.6. The finer meshes cover the same

domain and are constructed similarly to the shown mesh.

A Mach-number contour plot tbr fluctuation splitting on the finest mesh is shown
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State A

Mach= 2.3

AOA = -10 o

/ aoa = O°

/ / 24o
20 ° _ ....................

"_'._ 4° StateD

/- _ Math = 1.45

States
0 o

Mach = 1.8

AOA = 10 o

Figure 5.5: Description of converging Mach stream problem. Flow from left to right,

with oblique shocks, solid, and slip-line, dashed, emanating from trailing edge of

splitter plate.

State p, kg/m a T, K P, kPa V, m,/s

A 1.2 300 103.34 798.6

B 1.2 324.7 111.73 649.9

C 1.813 356.7 188.62 723.7

D 1.718 376.4 185.62 563.7

Table 5.1: Analytic thermodynamic states fbr converging Mach streams.
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Figure 5.6:16 x 16 mesh tbr converging Mach streams.

in Figure 5.7, showing crisp discontinuity resolution and the correct post-shock Mach

numbers. The shock angles tbr all eight cases, i.e. DMFDSFV and fluctuation splitting

on each mesh, are measured to be correct within +1 °. The L2-norms of the primitive-

variables error at states C and D are plotted versus the characteristic mesh size in

Figure 5.8. The slopes of the regression lines are indicative of the order of accuracy

with respect to grid convergence of the two schemes tbr this test case. DMFDSFV

exhibits second-order convergence, as expected. Unexpectedly, fluctuation splitting

shows super-convergence tbr this particular case. True multi-dimensional upwinding

is likely the source of the exceptional fluctuation splitting accuracy tbr this purely-

supersonic flow. Supplementing the graphical determination of the grid-convergence

rates, the equations presented by Roaehe[102], based on a Richardson extrapolation,

yield average grid-convergence rates of 3.0 tbr fluctuation splitting and 2.1 tbr DM-

FDSFV.

Temporal convergence rates are plotted in Figure 5.9, with timings pertbrmed on

an IRIS R10000 plattbrm. All cases were run using the Minmod limiter and a Jaeobi
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Figure 5.7: Mach contours from fluctuation splitting on finest mesh.
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Figure 5.8: Grid convergence rates fbr converging Mach stream case. Circles = fluc-

tuation splitting, squares = DMFDSFV.
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L2 (residual)

Figure 5.9: Convergence histories tbr converging Mach stream case. Fluctuation

splitting solid, DMFDSFV dashed. Coarsest mesh on left, finest on right.

update strategy with local time steps. Fluctuation splitting was run with a unity CFL

number, while best convergence tbr DMFDSFV was tbund tbr CFL=0.7. Fluctuation

splitting runs at 145 #s per node per iteration, while DMFDSFV runs at 165 ps per

node per iteration.

Diamond airfoil

A verification of the inviscid wall boundary condition is pertbrmed on a diamond airtbil

at zero angle of attack and Mach 1.5. The flow deflection is five degrees. The grid

is shown in Figure 5.10. A Mach-number contour plot using fluctuation splitting is

shown in Figure 5.11. The corresponding DMFDSFV solution, not shown, is visually

indistinguishable from the fluctuation splitting solution. The analytic drag coefficient,

based on chord length, is 0.02760. The fluctuation splitting drag coefficient is 0.02638,

tbr a 4.4 percent error. The DMFDSFV result has an error of 6.6 percent from a drag

coefficient of 0.02579.
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Figure 5.10: Grid tbr diamond airtbil verification test.
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Figure 5.11: Mach contours on diamond airtbil, M = 1.5, fluctuation splitting solu-
tion.
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Figure 5.12: Two-dimensional 10 percent circular bump mesh with isobars from fluc-

tuation splitting solution at Mach 0.1.

Circular bump

A subsonic two-dimensional verification is pertbrmed on a 10 percent circular bump

at Mach 0.1. The 1389-node mesh with isobars from the fluctuation splitting solution

is shown in Figure 5.12. A true incompressible inviscid flow would have symmetric

isobars tbre and aft, and zero drag. The fluctuation splitting drag coelficient, based

on cord length is 0.0058. DMFDSFV predicts a drag coelficient more than twice as

large, 0.0128. A lower fluctuation splitting drag coefficient is indicative of lower levels

of artificial dissipation in the solution tbr this case.

Sphere

In a similar vein, Mach 0.1 axisymmetric flow over a sphere is tested on a 1369-node

mesh. The drag coefficient, based on frontal area, is 0.43 tbr DMFDSFV but 0.56 tbr

fluctuation splitting. Contrary to expectation, the increased artificial dissipation in

the DMFDSFV solution creates enough of a total pressure loss to nearly eliminate

separation on the leeside, whereas the leeside increase in pressure toward the centerline

in the fluctuation splitting solution does produce a sizable separation region, and in

this case a larger drag coelllcient. As with subsonic bump case, true incompressible,
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inviseid flow should theoretically produce zero drag. Both solvers converged to steady

solutions for this case.

Cone

The final inviscid verification is fbr an ll-degree semi-vertex-angle cone at Mach 1.5.

The well-established Taylor-Maceoll[110] method tbr the conical supersonic Euler

equations predicts a drag coefficient, based on base area with no base pressure, of

0.7795. The fluctuation splitting solution, which converged seven orders of magni-

rude in 38 seconds, predicts a drag coefficient of 0.7785, tbr only a 0.13 percent error.

The DMFDSFV solution, which took 13 percent longer at 43 seconds to reach seven

orders of magnitude residual convergence, predicts a 0.7754 coefficient, tbr an error

of 0.53 percent.

5.6.3 Viscous Validation

Two canonical viscous validation cases are considered: a subsonic flat plate and a

hypersonic cylinder. Steady laminar solutions are obtained using the Haselbacher

thin-layer viscous treatment with containment-dual modification as described in sec-

tion 5.3.

Flat plate

The classic Blasius[111] flat-plate boundary layer problem is solved on a rectangular

domain. Mach 0.3 flow enters 2 units upstream of the plate leading edge, which is

located at the origin. The plate is 4 units long, ending at an extrapolation outflow

boundary. The upper boundary is 1.2 units above the plate. The Reynolds number

is 104.

The meshes are obtained from a structured grid containing 37 equally-spaced

points parallel to the plate, 12 points upstream of the plate and 25 points on the

plate, and 41 points normal to the plate. The vertical grid spacing at the wall is

0.001 units with an exponential stretching as described in Ref. [112], placing approx-

imately 20 nodes within the boundary layer. The unstructured mesh is tbrmed from
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(a) Fluctuation splitting. (b) DMFDSFV.

Figure 5.13: Boundary layer profiles of' tangential velocity extracted from three sta-

tions on fiat plate.

the structured grid using diagonal cuts in an alternating pattern. Two coarser meshes

are similarly constructed by successively deleting every-other node in the wall-normal

direction, leaving 10 and 5 nodes, respectively, in the boundary layer tbr the medium

and coarse grids.

Boundary layer profiles of u are extracted at x = 1, 2, 3 from both the fluctu-

ation splitting and DMFDSFV solutions and plotted versus the Blasius solution in

Figure 5.13. The boundary layer scaling variable is defined as,

rl zy (5.109)
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Figure 5.14: Boundary layer profiles computed using two different viscous dual mesh
definitions.

Both solution sets match the Blasius profile, indicating well-developed flow with ad-

equate grid resolution on the finest mesh.

Figure 5.14 shows the effect of using the containment-dual approximation in the

Haselbacher thin-layer viscous treatment. Boundary layer profiles of u are again

extracted at x = 1, 2, 3, with both solutions being run with fluctuation splitting.

Figure 5.14(a) is the same as Figure 5.13(a), while Figure 5.14(b) uses the strict

median-dual definition for the viscous terms. For the highly-stretched grid elements

used in this case, it is clear that the containment-dual approximation provides im-

proved boundary-layer resolution, while omitting the approximation leads to a profile

that is "too fhll."
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Figure 5.15: Boundary layer profiles of vertical velocity extracted from midpoint of

flat plate.

The v-velocity profiles from the fluctuation splitting and DMFDSFV solutions

are compared in Figure 5.15, both extracted from the plate at z = 2. The fluctu-

ation splitting solution comes much closer to matching the Blasius profile than the

DMFDSFV result. Excessive artificial dissipation is produced by the DMFDSFV

scheme in the y-momentum equation, which suppresses the v-velocity below the ana-

lytic value. The artificial dissipation contributions to the y-momentum equation are

plotted tbr both fluctuation splitting and DMFDSFV in Figure 5.16. The vertical

scale has been enlarged by a factor of 30 to zoom in on the boundary layer in Fig-

ure 5.16. Clearly, DMFDSFV is producing significantly more artificial dissipation

than fluctuation splitting over the length of the boundary layer.

For this essentially incompressible case, the suppression of the vertical velocity
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Figure 5.16: Artificial dissipation production in the 2-momentum equation. Eleven

contours spaced equally on 0 0.0005.
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due to excessive artificial dissipation is manifested by an increase in skin friction co-

efficient, as shown in Figure 5.17, where the friction coefficient increases with running

length tbr DMFDSFV, but not fbr fluctuation splitting. Recall that DMFDSFV is

continuously producing artificial dissipation over the length of the plate while the fluc-

tuation splitting dissipation is restricted to the leading-edge region only. Figure 5.17

presents data from all three grid refinement levels. The DMFDSFV results degrade

dramatically with coarsening of the mesh, but the fluctuation splitting results remain

relatively invariant with mesh resolution, all the way down to only five nodes in the

boundary layer.

The medium-mesh DMFDSFV solution was repeated using the full Navier-Stokes

treatment, rather than the thin-layer equations. No change in the skin-friction results

are seen over the first half of the plate, Figure 5.18, though there is an 8-percent

improvement toward the end of the plate. Solving tbr the full Navier-Stokes terms

requires 11 percent more CPU time per iteration.

Cylinder

The opposite end of the Mach-number spectrum is used to validate heat-transfer

calculations, in this case tbr a cylinder of i m radius in Mach 17.6 flow. The perthct-gas

assumption is a poor physical model tbr these extreme conditions, _ = 5 kin/s, p_ =

0.001 kg/m a, T_ = 200 K, Tw_l_ = 500 K, but the case provides a severe test of the

algorithms under a re-entry scenario. Results are compared against the LAURA[15,

16, 113] benchmarks) The LAURA code is well-established as a structured-grid

hypersonic solver. Also included in the LAURA benchmark data is a solution using

the unstructured-mesh finite volume solver FUN2D[83]. The FUN2D code employs

the same basic inviscid and viscous discretization strategy as the present DMFDSFV

scheme. However, differences exist between the two codes in their eigenvalue limiting

and their flux limiting, where FUN2D uses the Venkatakrishnan limiter[114] while the

present DMFDSFV scheme is using Minmod. Also, FUN2D uses a strong boundary

enforcement as opposed to the weak tbrmulation and the FUN2D heating rates are

post-processed from the temperature field rather than using the heat flux directly

lhttp ://her as. larc. nasa. gov/
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Figure 5.17: Skin friction coefficients for Blasius flow.
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Figure 5.18: Effect of viscous modeling on skin friction.

from the RHS discretization, as is used here.

The unstructured grid tbr this case was obtained by simple triangulation of the

LAURA grid, which has 65 nodes perpendicular to the surface, clustered to the wall,

and circumferential nodes spaced every 3 degrees. Only the tbrward-half of the cylin-

der is solved, as shown in the mesh and flowfield solution of Figure 5.19.

The surface pressure coefficient is plotted versus rotation angle from the stagna-

tion point tbr both the fluctuation splitting and DMFDSFV solutions, along with the

LAURA and FUN2D results in Figure 5.20. The LAURA, FUN2D, and fluctuation

splitting curves all over-plot, and the DMFDSFV solution nearly over-plots, being

1 percent low at the stagnation point and slightly high by a similar amount 90 de-

grees away. The calculations were repeated on a grid coarsened by a factor of tbur

(skip of two in both structured-grid directions), with surface pressure results plotted

in Figure 5.21 along with the fine-mesh LAURA solution. The coarsened fluctua-

tion splitting surface pressures retain good agreement, and the DMFDSFV solution

matches over most of the cylinder, with minor exceptions again at the stagnation
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Figure 5.19: Hypersonic cylinder domain with fluctuation splitting solution.
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Figure 5.20: Cylinder surface pressures, solid = fluctuation splitting, LAURA, and
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G

2.0

1.6

1.2

0.0
I I I I I I I I I

30 60 90

Rotation degrees from stagnation point

Figure 5.21: Cylinder surface pressures on coarsened mesh,

dashed = fluctuation splitting, and dotted = DMFDSFV.
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Figure 5.22: Cylinder surface heat-transthr rates, solid = LAURA, dashed = FUN2D,

and dotted = fluctuation splitting.

point, 1 percent high on this grid, and at the 90 degree point.

Surface heat-transfer rates for LAURA, FUN2D, and fluctuation splitting are

shown in Figure 5.22. Both of the unstructured-mesh solutions show elevated heat-

ing at the stagnation region, with fluctuation splitting being 30 percent higher than

LAURA while FUN2D is 50 percent higher. The DMFDSFV solution is shown in

Figure 5.23, predicting stagnation heating rates more than double the LAURA pre-

dictions. Also included in Figure 5.23 is the fluctuation splitting solution on the

coarse mesh, which is seen to produce heating rates closer to the LAURA solution

than DMFDSFV does on the fine mesh. While the basic DMFDSFV and FUN2D

schemes are ostensibly the same on the interior domain, the significant differences in

boundary implementation and limiting detailed at the start of this section are the

reasons tbr the differing heat transfer predictions between the codes.

The fine-mesh solutions were repeated using the thll Navier-Stokes treatment, and

no changes in heating levels were observed.
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Figure 5.23: Cylinder surface heat-transfer rates, solid = LAURA, dashed = DM-

FDSFV(fine), and dotted = fluctuation splitting(coarse).

5.6.4 Summary of Results

Six inviseid test cases veritp and compare the fluctuation splitting and DMFDSFV

implementations. Both schemes are able to maintain unitbrm flow on a severely

distorted mesh. DMFDSFV displays the design order of accuracy, second-order, tbr

converging Mach streams while fluctuation splitting surprisingly displays third-order

accuracy tbr this case. Fluctuation splitting is more accurate than DMFDSFV tbr

the diamond airtbil, circular bump, and supersonic cone, but DMFDSFV is more

accurate tbr the sphere test. Timings reveal fluctuation splitting runs 10 12 percent

faster than DMFDSFV per node with the present algorithms.

The two viscous validation cases are an incompressible flat plate and M = 17.6

cylinder. On the flat plate fluctuation splitting produces significantly less artificial

dissipation than DMFDSFV and provides much better skin friction predictions on

coarse meshes, down to only five points in the boundary layer. Both schemes produce

excellent surface pressures tbr the hypersonic cylinder and fluctuation splitting does
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better for surface heating, though neither unstructured scheme predicts heating as

well as the structured-mesh benchmark result.



Chapter 6

System Mesh Adaption

6.1 Overview

The adaption strategies detailed in chapter 4 tbr scalar advection-diffusion problems

are extended to the Navier-Stokes system of equations. For the first time, the fluctu-

ation minimization strategy fbr mesh adaption is developed fbr two-dimensional and

axisymmetric systems, and is compared with the curvature clustering adaption that

is representative of the current state of the art.

This chapter's application case is a Mach-10 wind tunnel simulation of a sting-

mounted Mars capsule model. This case has previously been studied by Hollis[115]

using a structured-grid adaption strategy, and the resulting agreement with experi-

mental data fbr the sting heating was "fbund to be highly dependent upon grid res-

olution and grid quality" in the wake. The structured-grid approach to this problem

required an extremely fine mesh with extensive adaptation by hand. The challenge fbr

the unstructured-grid techniques will be to obtain comparable accuracy using fewer

grid points with fully automated adaption.

6.2 Curvature Clustering

The local, anisotropic adaption strategy based upon a posteriori error estimates is

extended directly from section 4.1. In extending to the system, Eqn. 4.2 generalizes

153
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to,

X_gl-ff°l _ _U0.

lEvi _ _'01 __ t'01 2 (_ )'_01 (6.1)g01 C01 = U1 - X_U0

A scalar value fbr the error estimate is required, with a simple choice being to just

take the L2-norm of the error vector. Also, the error does not necessarily need to

be formed from the conserved variables, but could alternatively be fbrmed from the

primitive variables, the Mach number as Habashi[76] does, or even a derived quantity

such as heat transfer.

The basic operations remain point deletion, edge swapping, point insertion, and

nodal displacements. These procedures are applied sequentially in the order listed,

with the solver iterating on the solution between each of the fbur steps, constituting

a complete adaption cycle. A tolerance can be set fbr thresholds to define when the

mesh is sufficiently adapted.

While the explicit use of nodal gradients in Eqn. 6.1 makes this style of adaption

naturally symbiotic with the DMFDSFV scheme used here, there is no restriction

against using curvature clustering with the fluctuation splitting solver. Also note

that Eqn. 6.1 is written in vector notation, and so can be applied directly in three

dimensions just as it is used here in two spatial dimensions.

6.3 Characteristic Alignment

Chapter 4 demonstrated that fluctuation splitting is an exact solver for linear ad-

vection on a characteristically-aligned mesh. Adaption fbr characteristic alignment

was developed as an automated, anisotropic local-operation strategy in sections 4.2

and 4.4. Applications to non-linear and advection-difthsion problems showed that

alignment with characteristics was approximated, but not fully achieved, by the au-

tomated local scheme. For the Navier-Stokes system, true characteristic alignment is

not a physically valid ideal due to the presence of multiple and/or imaginary charac-

teristics. However, the automated local anisotropic adaption strategy is extended here

with the objective of achieving solution improvement with fluctuation minimization
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as the agent to obtain characteristic-driven alignment in supersonic regions consistent

with mesh enrichment in the subsonic regions.

As with the scalar case, the analogy to the edge error estimate is tbrmed from

the fluctuations, both inviscid and viscous, in the cells adjoining the edge. For ax-

isymmetric cases the fluctuation is scaled by the inverse of the cell-centroid y value.

Additional weighting by the inverse of the square root of the cell area is tbund to

balance the contributions from neighboring cells of disparate sizes.

Point deletion

Nodes are flagged tbr deletion if the sum of the L2-norms of the fluctuations in all

surrounding cells is below a threshold. Edges are swapped in an attempt to reduce

the number or edges connected at the node to three or tbur to match the canonical

point-removal patterns. If the local connectivity is too complicated tbr the automated

pattern matching, the node is simply left in the domain. During a typical cycle, on

the order of only 10 percent of the nodes that had been flagged tbr deletion will be

left in the domain because of localized complicated connectivity.

Point insertion

An edge is split, adding a node, if the sum of the L2-norms of the fluctuations in the

cells to either side of the edge exceed a threshold. The cell fluctuations are weighted

in the same manner as was described tbr the point deletions.

Edge swapping

An edge is flagged as a candidate tbr swapping if the RMS of the fluctuations in the

cells to either side of the edge exceed the target threshold. If the swapped config-

uration maintains a physically valid grid, then the RMS of the fluctuations in the

swapped cells are computed. If the swapped configuration has a smaller RMS value

then the edge swap is pertbrmed.
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Nodal displacement

Mesh movement tbr the system is driven by the minimization of a thnctional, just as

tbr the scalar case. The system extension of Eqn. 4.21 is,

(6.2)

The thnctional T can be expressed in terms of either the conserved or auxiliary

fluctuations, as the minimization of one implies the minimization of the other. The

derivative of T (see Eqn. 4.22) is tbrmed using the chain rule as,

OT i 1 0 _ T _T0_T_ _r 00T_"

+ (pT_(PT + OT._,T_) (6.3)

Having defined the gradient of the functional, the method of steepest descent from

Eqns. 4.24 and 4.25 can be applied directly to drive the nodal displacements.

The weighting factor '_'T is a symmetric positive-definite matrix. Weighting each

equation equally without regard to cell sizes results in '='T = I, while inverse area

lI The derivatives of _T tbr these and other area-weightedweighting yields '='T = ST "

choices have been covered in Eqns. 4.50 4.56.

The cell fluctuation can be rearranged from Eqn. 5.41 (two-dimensional terms) as,

31

= _ _ gjfij..2tWj (6.4)
j 1

where Wj = W2Zj. Following Eqns. 4.32 and 4.33, the derivatives of the fluctuation

are,

Ox2 2

Oy2 2

(oawA'(Wl-W_)+ZeA.J[g_ J+ o_ ] (6.5)
j 1

Ax(w_- Wl) + _:/_5. \_-7 .j+ (6.6)j 1 Oy2
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The flux Jacobian of the auxiliary variables is,

[i00il0 0 0
,.A = l_I + (6.7)

0 0

a2_ a2_

which leads to the approximation 0__4_ og/[ As was done for the scalar case, it is
Ox -- Ox "

assumed that moving a node does not change the solution at the other two nodes of

the triangle, so that the variation of the cell-average flux Jacobian scales like one-third

the variation of the velocity at the node being moved, o_ _ __o<?f
-- 30x2 _"

Similarly, the variation of the Jacobian of the transformation scales like one-third

the nodal variation. °w----a_ 1 oz______and is neglected as a sub-principle term relative to
• Ox2 30x,2 '

the change in solution value,

OWj _ OZj

_-W2o-ZC (6.8)

Since the solution is locally assumed to vary only at the node being moved, i.e.,

Oil __ OZ.__O,
Ox2 Ox2

k0Wj __ W2 (6.9)
OZ2

.j 10x2 Ox2

oz2 The steady-state distribution can beThe remaining term to evaluate is o-_-_'

written,

E [(/+ M_)a- ([ + M/_)_] W2Z2
T

= E [(/+ Ma)°_W2Zl- (I + M/3)_W2Z3]

T

or,

E (0_-- -- 1_+)W2Z 2 = E (°g+WzZl- ]_+W223)

T T

(6.10)

(6.11)
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where,

Og+ z

=5

Differentiating while freezing the Jacobians leads to,

T

_ OZ21

(6.14)

(_+ _ _+)weOZ2 ro_+ an+we (z3- z2)] (6.15)

oz2 (°_+ _7-w a_+_Tw_ (6.16)

Neglecting the subsonic blending on Ms and Ma allows _+ and/_+ to be expressed

aS,

ct+ ={ _'0, 1)__<01)_>0 /_+={ /_,0, 1)/3_<01)/3>0 (6.17)

with derivatives,

0ct+ { °a 1)_>0 0/_+ { °_ l)_>0
- _' - _' (6.18)

0, 9__<o _ 0, 9__<o

The derivatives ot'c_ and fl remain as Eqns. 4.41 and 4.42.

Having determined oz_ o_ tbllows from,Ox2,

du = d(x/PU)- ud(v_) dv = d(v_v)- vd(v/P) (6.19)
v_ v_

The concept of fluctuation minimization extends directly to three dimensions for

point deletion and insertion. The idea of edge swapping extends as face reconnec-

tions amongst tetrahedra in three dimensions which is more complicated due to the
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increased degrees of fl'eedom and geometric connection possibilities. The functional

fbr nodal displacements, Eqn. 6.2, is written in vector notation and so can be applied

directly to three dimensions. However, not only would the derivatives of the fluc-

tuation splitting scheme need to be refbrmulated, but the basic fluctuation splitting

scheme itself would need to be worked out in detail to move to three dimensions.

A three-dimensional alignment strategy has been employed by Beeman and Pow-

ers[116]. That method starts on an attached shock and projects downstream, trying to

remain on the shock. This involves iterating an assumed shock shape and an implied

body, iterating until the implied body matches the true surface. Open questions

remain on how to start on detached shocks and how to handle embedded shocks. A

significant drawback mentioned by the authors is that, "[The method] far enough

downstream will eventually become unstable."

6.4 Mars Pathfinder

The demonstration case tbr the system adaption is borrowed from the Mach-10 wind

tunnel tests of Hollis[115, 117, 118], which investigated the aerothermodynamic envi-

ronment experienced by a payload in the wake of an aerobrake. For his dissertation,

Hollis specifically looked at the effect of grid adaption on sting heating tbr his model.

Using a structured-grid finite volume solver, a mesh of 125 x 357 = 44,625 nodes was

required to get reasonable pressure and heating-rate agreement on the sting. Addi-

tionally, this fine mesh required extensive and time consuming adaption by hand to

sufficiently resolve the wake flow.

Using the Hollis data as a benchmark, the present study seeks to achieve compara-

ble results on an autolnatically-adapted unstructured mesh. Significant time savings

can be achieved primarily by automating the adaption procedure, but also reducing

the solver iteration and convergence times if the unstructured approach requires fewer

grid nodes tbr the same resolution.
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Figure 6.1" Computational domain tbr axisymmetric Mars Pathfinder capsule.

6.4.1 Configuration and Conditions

The axisymmetric wind tunnel model of the Mars Pathfinder capsule consists of a

spherically-blunted 70-degree sphere-cone. The radius is 1 in. and the nose radius is

12in. The shoulder radius is _0 in. and the at%body angle is 40 degrees. The base

13 in. Figure 6.1 shows the3 in. The sting is 4 in. long with a radius of 57radius is g

boundary of the computational domain.

The freestream conditions for the NASA Langley 31-Inch Mach 10 Air Tunnel,

corresponding to a nominal Reynolds number per foot of 0.5 x 10 _ t%-1, are: P = 69 Pa,

T = 53 K, p = 0.0045 kg/m 3, and u = 1416 m/s. The wall temperature is taken

to be a uniform 300 K. Historical experience with this tunnel at these conditions

indicate that laminar pert?ct-gas calculations are adequate tbr comparison with the

experimental data.
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In addition to the axisymmetric configuration, the present study also considers

a two-dimensional version of the problem, using the same geometry and freestream

conditions.

6.4.2 Benchmark Data

For the axisymmetric configuration Hollis has provided the experimental heat-transfer

data along with numerical heat-transfer and surface pressure results. The numerical

results were generated using the NEQ2D code of Candler[119]. A second set of numer-

ical results were obtained tbr the present study using the LAURA code of Gnottb[15].

Both of these codes are structured-grid finite volume solvers. Surface pressure co-

efiqcients from the numerical results are shown in Figure 6.2 and heat-transthrs tbr

all three datasets are in Figure 6.3, where the size of the symbols is indicative of

the uncertainty in the experimental data reported by Hollis, 4-7%. The tbrebody

pressures are in agreement between NEQ2D and LAURA, but the aftbody pressure

agreement is weaker. The computed heating rates match the experimental data, aside

from an irregularity in the LAURA result at the stagnation point, along the body to

a running length of 3 inches, which is located on the sting. Hollis speculates that the

free shear layer in the wake may be transitioning at the point where the experimental

and computational heating rates diverge on the sting.

For the two-dimensional configuration, the axisymmetric grid was enlarged to be

125 × 513 = 64, 125 nodes so as to capture the bow shock due to the greater shock

stand-off distance. A LAURA solution was obtained tbr this case, and the results of

grid convergence in the body-normal direction on pressure and heating are shown in

Figures 6.4 and 6.5. Surface pressures are largely converged with 129 points in the

body-normal direction, and certainly by 257 points. A similar statement applies tbr

the heating, except in the vicinity of the stagnation point. The heating prediction at

the nose continually increases with each grid doubling.
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Figure 6.2: Axisymmetric capsule benchmark surface pressures, solid=NEQ2D,
dashed=LAURA.
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6.4.3 Unadapted Baseline

Prior to performing any adaption, both unstructured DMFDSFV and fluctuation

splitting schemes were used to obtain solutions on triangulated versions of the struc-

tured meshes, as an indication of a target accuracy tbr the adaption strategies. During

this process, a number of problems and sensitivities were encountered.

As a general note the explicit single-stage time integration scheme used here is

severely restricted in the stable timestep tbr high-Reynolds-number viscous problems.

A structured-mesh solver, such as the LAURA code, would typically alleviate this

stiffness by employing an implicit solver. Another option would be to use a parallelized

strategy. However, both the development of an unstructured implicit solver tbr the

present schemes and the parallelization of the schemes were considered beyond the

scope of the current work. As a consequence, viscous solutions fbr the capsule on the

fine meshes required weeks of CPU time on a desktop PC.

Since both the DMFDSFV and the fluctuation splitting schemes are implemented

at the nodes, the timestep on the axisymmetric axis vanishes, slowing temporal con-

vergence. The radial term in the timestep determination is chosen at the median-dual

centroid tbr nodes on the axisymmetric axis, rather than at y = 0, allowing tbr a more

realistic wave propagation on the axis. The solutions are observed to remain tempo-

rally stable with this implementation while yielding much faster convergence rates.

Yet, the axisymmetric axis is always observed to converge slower than the rest of the

flowfield, due to the radial weighting on the control volume. In general, axisymmetric

solutions take two to three times longer to converge than an equivalent two-dimen-

sional case because of this axis singularity eit_ct.

The carbuncle ett?ct, Figure 6.6, reared its ugly head tbr some cases, typically on

meshes that are fine in the streamwise direction but very coarse in the body-normal

direction. Although the carbuncle eit?et is a known deficiency I in the structured

1The carbuncle effect was first reported by Peery and Imlay[120] for a Mach-6 cylinder as an
unexplainable "protuberance" in the bow shock at the symmetry plane. Later work by Roberts[121]
and Quirk[122] reveal the mathematical basis for the production of spurious solutions for grid-aligned
shocks with the Roe flux difference splitting scheme. As Quirk reports, "[P]arallel to the shock, Roe's
scheme will not add any dissipation via the contact and shear waves, to counteract perturbations
that appear through the acoustic waves; this appears to be a recurring theme whenever Roe's method
fails. It is interesting to note that if Harten's entropy fix is applied to the contact and shear waves,
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f
Carbuncle in bow shock.

Figure 6.6: Fluctuation splitting u-velocity contours, showing carbuncle tbrmation

tbr two-dimensional capsule case.

Roe solver, its behavior in unstructured schemes has not been as well characterized.

Lowering the CFL number by three orders of magnitude did not change the solution,

verifying that the phenomenon was not instability induced. Similarly, re-running

time-accurately produced the same behavior, strongly suggesting the phenomenon

was not transient induced. The traditional fix for the Roe scheme involves adding

dissipation through eigenvalue limiting. The present schemes were being run with

thin-layer viscous terms and eigenvalue limiting on W + a only. Switching to thll

viscous terms and limiting all eigenvalues both served to reduce the occurrence of the

carbuncle eft?ct, Figure 6.7.

The last problem encountered was that the surface heating at the stagnation point

had the wrong trend, dropping toward zero heating. Figure 6.8 shows the tbrebody

any shortcoming of Roe's scheme is invariably cured. However, there is no justification, either
physical or mathematical, for applying this fix to these waves, it is just a convenient method for
introducing an amount of artificial dissipation into the scheme."
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Moc = 10

Figure 6.7: Fluctuation splitting u-velocity contours tbr two-dimensional capsule case.

heating on a two-dirnensional 63 x 129 mesh using fluctuation splitting. Note the

dramatic drop in heating at the stagnation point, contrasted with the benchmark

data of Figure 6.5(a). Looking into the flowfield fbr an explanation of the heating

trend a recirculation bubble is tbund at the nose, Figure 6.9, which physically should

not be present. The cause of this stagnation recirculation proved extremely time

consuming to identif)_ and it was unexpectedly tbund to be a grid-induced feature.

The unstructured meshes fbr the unadapted cases were initially created by a simple

triangulation of the structured grids. All quadrilateral cells were cut in the same

direction, and this bias in the diagonals along the axis boundary produced a shift

in the stagnation point off the axis. Repeating the calculations on a biased grid

covering both the upper and lower half-planes removed the vortex but still shif'_ed

the stagnation point. The cure tbr this problem was to remove the grid bias by

alternating the diagonals in the derived unstructured meshes, yielding the vortex-free

solution in Figure 6.10 tbr the same case as is shown in Figure 6.9.
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Figure 6.10: Correct streamlines in stagnation region.

32x65 32x 129

63 x 65 63 x 129 63 x 257

125x65 125x 129 125x 257 125 x 513

Table 6.1: Matrix of grid dimensions tbr two-dimensional baseline cases.

Two-dimensional

Viscous solutions for the two-dimensional capsule were computed using both fluctu-

ation splitting and DMFDSFV discretizations on a sequence of unadapted grids as

listed in Table 6.1.

Results using only 32 points to define the surface were generally under-resolved tbr

both schemes. Results tbr 63 and 125 surface points are compared in Figures 6.11 6.14

using 257 points normal to the body.

DMFDSFV surface pressures, Figure 6.11, overlap the benchmark results on the

tbrebody tbr both grids. Aftbody pressure agreement is poor tbr 63 surface points.

The solution improves by going to 125 points, though the pressure coefficient is still

over-predicted by a factor of 2. The heating trends tbr DMFDSFV are reversed
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Figure 6.11: Two-dimensional capsule surface pressures: /-refinement with DMFDS-

FV, solid=63, dashed=125, dash-dot-dot=benchmark.
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Figure 6.13: Two-dimensional capsule surface pressures: /-refinement with fluctuation

splitting, solid=63, dashed=125, dash-dot-dot=benchmark.



174 CHAPTER 6. SYSTEM MESH ADAPTION

0.015 i%

0 .0125

g
p_VT_

O .O1 --

0 .0075 _

0.005

0 .0025

0 --

0.5 1 1.5

S, in.

(a) Heatshield.

0.001 --

0.0008 -

q

P_Yo%
0.0006 --

0.0004

0.0002

0

M
/,:./

! __.///'/
I"s

O .0002 --I I I I I I I I I I I I I I I I I I I I I

1 2 3 4 5

s, in.

(b) Aftbody and sting.
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from the pressure trends. Figure 6.12 shows that the coarser-mesh tbrebody heating

is in poor agreement with the benchmark. The finer mesh improves the heating

prediction, but is still more than 20 percent higher than the benchmark over much

of the heatshield, especially at the shoulder. The aftbody and sting heating rates are

reasonable on both meshes.

Fluctuation splitting surface pressures, Figure 6.13, are in very good agreement

with the benchmark data, both tbre and aft. The 125 surface point mesh is in par-

ticularly good agreement, over-plotting the benchmark over all but the tail end of

the sting. Fluctuation splitting surface heating, Figure 6.14, is in good agreement

tbr both meshes, with the finer mesh providing better resolution at the shoulder.

The glaring weakness in the fluctuation splitting solutions is at the stagnation point,

where the heating spikes 40 percent higher than the benchmark. Further, the known

correct heating trend at a stagnation point calls tbr the heating to level off, as the

benchmark results do, rather than spike, as with the present results.

Grid convergence trends in the body-normal direction, tbr 125 surface points, are

shown in Figures 6.15 6.18.

The DMFDSFV surface pressure grid convergence is shown in Figure 6.15. On

the tbrebody excellent agreement with the benchmark is seen tbr all but the coarsest

mesh. On the aftbody and sting, only the solution from the mesh with 129 points

normal to the body is in good agreement with the benchmark. The trend with

refining the mesh is toward increasing pressures on the aftbody, and the solutions do

not appear to be converging toward the benchmark result. The DMFDSFV heating

with grid refinement is shown in Figure 6.16. On the heatshield the solution from the

j=129 mesh provides the closest match to the benchmark, while the 257-point result

is not too much worse. The solution from the coarsest mesh is wildly unresolved and

the result from the finest mesh is disappointing. On the aftbody, again the coarsest

mesh is under-resolved. The three finer meshes do appear to be converging with grid

refinement and have reasonable agreement with the benchmark.

The fluctuation splitting surface pressures, Figure 6.17, show good grid conver-

gence trends, with both of the two finest meshes matching the benchmark over the

entire body, and none of the grids produced terrible results. Fluctuation splitting
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Figure 6.15: Two-dimensional capsule surface pressures: j-refinement with DMFDS-

FV, solid=513, dashed=257, dotted=129, dash-dot=65, dash-dot-dot=benchmark.
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Figure 6.16: Two-dimensional capsule surface heating: j-refinement with DMFDSFV,

solid=513, dashed=257, dotted=129, dash-dot=65, dash-dot-dot=benchmark.
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32 × 45 32 × 89

63 × 45 63 × 89 63 × 177

125×45 125×89 ]25×177 125 × 353

Table 6.2: Matrix of grid dimensions tbr axisymmetric baseline cases.

heatshield heating, Figure 6.18, also shows good grid convergence trends, with both

of the two finest-mesh solutions matching the benchmark well except at the stagna-

tion point, where the 513-point results do better but still have a spike of 15 percent

at the symmetry line. Heating results in the wake region also show some grid conver-

gence trends, though the finest mesh resolves an additional wake vortex on the sting,

producing an inflection in the data. The coarser meshes actually match the bench-

mark better on the aftbody, befbre elevating on the sting where the finer meshes, and

the 257-point result in particular, do a better job of matching the benchmark.

The two-dimensional unadapted baseline results are chosen to be the solutions on

the triangulated 125 × 257 mesh. The fluctuation splitting solutions on this mesh

were as good as on the finest mesh but with half the points. For DMFDSFV the

125 x 129 mesh produced results generally as good as or better than the baseline,

though the results are difficult to interpret due to the lack of clear grid-convergence

trends. The baseline surface pressures and heating rates are shown in Figures 6.19

and 6.20. Both solvers match tbrebody pressure with the benchmark. Fluctuation

splitting also matches the benchmark pressure on the sting, while the DMFDSFV

baseline over-predicts the pressure in this region. The fluctuation splitting tbrebody

heating matches the benchmark well except as previously discussed at the stagnation

point. The DMFDSFV tbrebody agreement is not as good. However, both schemes

yield comparable aftbody heating rates.

Axisymmetric

Viscous solutions tbr the axisymmetric capsule configuration were obtained on a se-

quence of unadapted meshes tbrmed as triangulations from the structured meshes

used tbr the benchmark computations. The sequence of grids is listed in Table 6.2.

All of the axisymmetric solutions to be shown suffer from irregular heat transfer
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Figure 6.19: Two-dilnensional baseline capsule surface pressures, solid=fluctuation

splitting, dashed=DMFDSFV, dash-dot-dot=benchmark.
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patterns at the axis stagnation point, true tbr both the DMFDSFV and fluctuation

splitting tbrmulations as here implemented. The stagnation point surface pressures,

however, are well behaved. The difficulty with the heating appears to be a result of

applying the weak tbrm of the boundary conditions at both a mathematical singular-

ity, the axisymmetric axis, and a surface flow singularity, the stagnation point, tbr the

node-based schemes. Cell-based, rather than node-based, schemes or strong bound-

ary enforcement formulations might not experience similar stagnation point heating

difficulties tbr the axisymmetric cases. These heating irregularities are confined to

the stagnation node and immediate neighbor nodes.

As with the two-dimensional results, the axisymmetric solutions using only 32

points to define the surface were under resolved. Results using 63 and 125 points

to define the surface are presented in Figures 6.21 6.24, all with 89 points in the

body-normal direction.

DMFDSFV surface pressures, Figure 6.21, overlap the benchmark results on the

tbrebody, especially on the finer mesh. Aftbody pressures are poorly resolved on the

coarser mesh. The finer mesh reasonably matches the benchmark except right at the

shoulder where the overexpansion is missed. DMFDSFV heating trends with stream-

wise refinement are shown in Figure 6.22. The tbrebody heating is nmch improved

on the finer mesh, though still 20 percent higher than the benchmark over most of

the heatshield. The stagnation point heating is over-predicted by as much as 40 per-

cent on both meshes and the peak heating on the shoulder is greatly over-predicted.

However, on the aftbody and sting the finer mesh results are in very good agreement

with the benchmark results. The coarser mesh under-predicts the wake heating.

Fluctuation splitting surface pressures tbr streamwise grid refinement are shown

in Figure 6.23. The tbrebody pressures are the same tbr both meshes, but are 3 5 per-

cent lower than the benchmark, except at the stagnation point where the benchmark

is matched. Aftbody pressures match the benchmark extremely well tbr both grids.

Forebody heating with fluctuation splitting, Figure 6.24, matches the benchmark

fairly well except tbr over-predicting the shoulder heating spike and the stagnation

point maximum. The finer mesh does a better job at the shoulder but results from

neither mesh are particularly encouraging at the stagnation point. The fluctuation
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Figure 6.21: Axisymme_ric capsule surface pressures: /-refinement with DMFDSFV,

solid=63, dashed=125, long-dash=NEQ2D, dash-dot-dot=LAURA.
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Figure 6.23: Axisymmetric capsule surface pressures: /-refinement with fluctuation
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splitting heating results on both meshes provide excellent matches with the bench-

mark data oil the aftbody and sting.

Grid convergence trends in the body-normal direction, fbr 125 surface points, are

shown in Figures 6.25 6.28.

DMFDSFV /brebody pressures match the benchmark on all grids, Figure 6.25.

However, the aftbody and sting pressures do not show grid convergence. The best

match with the benchmark comes on the grid with 89 points normal to the body. It

is disappointing that the pressures deteriorate on the finer meshes, with the details

being washed out perhaps by a different separation pattern in the wake. The DM-

FDSFV tbrebody heating, Figure 6.26, also fails to show a good grid convergence

trend, with the results deteriorating on the finer meshes. The two coarser meshes

provide the best agreement, with the 89-point results being smoother than the 45-

point solution. Still, the fbrebody heating is over-predicted by 20 percent over most

of the heatshield and by more at the stagnation point. On the aft, body and sting only

the 89-point solution provides good agreement with the benchmark data.

Surface pressure trends with grid refinement in the body-normal direction using

fuctuation splitting are shown in Figure 6.27. The forebody pressure is grid con-

verged on all meshes, but slightly under-predicts the benchmark results. Aftbody

and sting pressures on all meshes show excellent agreement with the benchmark solu-

tions. Forebody heating with fluctuation splitting, Figure 6.28, shows good agreement

over most of the heatshield fbr all but the 45-point mesh, which itself is only 20 per-

cent elevated. As usual the stagnation point heating is largely in error. Heating in

the wake shows good agreement fbr all but the finest mesh, where the heating on the

sting shows an unexpected inflection point.

The axisymmetric baseline solutions are chosen to be the results on the triangu-

lated 125 x 89 mesh. The fluctuation splitting solutions are consistently grid con-

verged on this mesh, and the DMFDSFV results on the mesh are generally the best,

often better even than on the finer meshes. The axisymmetric baseline pressures are

presented in Figure 6.29. On the heatshield the DMFDSFV solution overlaps the

benchmark pressures, while the fluctuation splitting result is steadily 3 percent low.
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splitting, solid=63, dashed=125, long-dash=NEQ2D, dash-dot-dot=LAURA, cir-

cles=experiment.
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Figure 6.25: Axisymmet.ric capsule surface pressures: j-refinement with DMFDS-

FV, solid=353, dashed=177, dotted=89, dash-dot=45, long-dash=NEQ2D, dash-dot-
dot=LAURA.
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Figure 6.26: Axisymmetric capsule surface heating:

FV, solid=353, dashed=177, dotted=89, dash-dot=45,

dot=LAURA, circles=experiment.
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Figure 6.27: Axisymmetric capsule surface pressures: j-refinelnent with fluctua-

tion splitting, solid=353, dashed=IT7, dotted=89, dash-dot=45, long-dash=NEQ2D,
dash-dot-dot=LAURA.
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Figure 6.28: Axisymmetric capsule surface heating: j-refinement with fluctua-

tion splitting, solid=353, dashed=IT7, dotted=89, dash-dog=45, long-dash=NEQ2D,
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On the aftbody and sting it is the fluctuation splitting solution that provides an ex-

cellent match to the benchmark. The DMFDSFV solution is generally good except

tbr missing the overexpansion pressure drop at the shoulder, seen as the pressure min-

imuIn at s = 1.2. The baseline surface heat transfer rates are shown in Figure 6.30.

The fluctuation splitting heating on the tbrebody is in very good agreement with

the benchmark data except at the stagnation point, where the match is poor. The

DMFDSFV result generally over-predicts the tbrebody heating, except tbr a region

between s = 0.2 0.4 near the nose, where the agreement with the benchmark data

is very good. Heating levels at the stagnation point and shoulder are both greatly

over-predicted. Both schemes match the benchmark heating datasets on the aftbody

and sting.

6.4.4 Solution-Adapted Results

The adaption mechanisms, point deletion, edge swapping, nodal displacements, and

point insertion, are applied one at a time, using both the curvature clustering with

DMFDSFV and the fluctuation minimization with fluctuation splitting, to assess the

effect of each individual component. Then a tull adaption cycle is applied using a

strategy based upon the results of the individual adaption tests.

Two-dimensional

For point deletion the starting solution is the converged baseline. The baseline mesh

has 32,125 nodes, and the objective is to remove points while maintaining the accuracy

of the baseline solution. Both schemes were able to remove 10 percent of the nodes

(3284 nodes tbr fluctuation minimization and 3366 tbr curvature clustering) causing

minimal change to the solution. The nodes were predominantly removed from the

freestream. A thrther 10 percent of the nodes were removed (3157 tbr fluctuation min-

imization and 3076 tbr curvature clustering), tbr a total of 20 percent of the nodes

deleted from the initial grid. The heating rates tbr both schemes are essentially un-

changed, Figures 6.31 and 6.32, but both schemes have trouble maintaining the bow

shock capture due to the thrther loss of freestream points, as shown in Figure 6.33 tbr
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Figure 6.29: Axisymmetric baseline capsule surface pressures, solid=fluctuation split-

ting, dashed=DlvIFDSFV, long-dash=NEQ2D, dash-dot-dot=LAURA.
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Figure 6.30: Axisymmetric baseline capsule surface heating, solid=fluctuation

splitting, dashed=DMFDSFV, long-dash=NEQ2D, dash-dot-dot=LAURA, cir-

cles=experiment.
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Figure 6.31: Two-dimensional capsule surface heating after coarsening with curvature

clustering, solid=baseline, dashed=10% removed, dotted=20% removed.



6.4. MARS PATHFINDER 197

0.015

0.0125

q

0 .01

0.0075

0.005

0.0025

I I I I I I I I I I

0.5

S, in.

1.5

(a) Heatshield.

0.001 --

0.0008 -

q
oo_vo%

0.0006 --

0.0004

0.0002

0

°.°°_

°°° •

°.° •

°°° _.

0.0002 --I

i

i i i i 1 i i i i 1 i i i i 1 i i i i 1

2 3 4 5

S, in.

(b) Aftbody and sting.

Figure 6.32: Two-dimensional capsule surface heating after coarsening with fluctua-

tion minimization, solid=baseline, dashed=10% removed, dotted=20% removed.
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Figure 6.33: Loss of shock capture due to coarsening, fluctuation splitting.

fluctuation splitting with fluctuation minimization. A similar problem also occurred

using DMFDSFV with curvature clustering. The removal of more points causes rapid

solution deterioration due to the failure of both schemes to properly capture the bow

shock on the coarsened meshes.

For evaluating the edge swapping adaption the starting mesh has half as many

points as the baseline, about 16,000 nodes and 50,000 edges, with the goal of realizing

an improvement in the solution. Curvature clustering was used to swap the 538

edges (approximately 1 percent) with the largest error estimate. These edges were all

located in vicinity of the bow shock. The resulting heat transfer rates show only minor

changes from the starting solution, Figure 6.34, without showing a clear progression

toward the benchmark dataset. Edge swapping with fluctuation minimization is not

beneficial tbr this case. About 1 percent of the edges were swapped but the resulting

fluctuation splitting solution does not converge due to ringing of the bow shock near

the stagnation point. Figure 6.35 shows pressure contours in the stagnation point

region. Notice the irregular contours downstream of the shock. The difficulty in this
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Figure 6.34: Two-dimensional capsule surface heating after swapping with curvature

clustering, solid=start, dashed=l% swapped, dash-dot-dot=benchmark.
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Figure 6.35: Fluctuation splitting shock bulging at stagnation point after edge swaps,

pressure contours.

solution is that the bow shock is making discrete jumps across grid lines, induced by

swapped edges at the shock. The unadapted bow shock more closely tbllows the grid

lines at the y = 0 symmetry plane. Recall that this mesh was originally well-aligned

with the bow shock from the structured-grid solvers, and the effect of edge swapping

on a more random unstructured mesh may be different. Also, on a finer mesh, such as

is used tbr the baseline solutions, the smaller grid spacing at the shock might lessen

the detrimental effects of discrete jumps in the shock location. Edge swapping was

tried again tbr fluctuation minimization, this time only swapping half a percent of

the edges, but still produces the same disappointing results.

Nodal displacements are tested using the same 16,000-node mesh as was used to

start the edge swapping, also with the goal of improving the solution toward the

baseline. Curvature clustering was used to move 1717 nodes with the largest error

estimates, about 10 percent of the nodes. The total distance moved was 10.34 in., the

average distance moved was 0.006 in., and the RMS distance moved was 0.0095 in.

Nodes were moved in the shock, at the shoulder, and in the tbrebody boundary layer.
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Figure 6.36: Nodal displacements at. shock using curvature clustering, original mesh
shaded.

A close-up of movemen_ at the bow shock is shown in Figure 6.36, where the original

mesh is shaded. Observe that the movement is not aggressive, but rather produces

a gentle clustering toward the shock. Surface heating rates for this case are shown

in Figure 6.37, where a minimal change in the solution is seen. Displacing nodes

with fluctuation minimization moved 1827 nodes a total distance of 0.7488 in., for an

average of 0.0004 in. and RMS of 0.0015 in. The fluctuation minimization movement,

while moving a few more nodes than the curvature clustering, moved the nodes much

smaller distances. Again, the movement occurred at the shock, near the shoulder,

and in the tbrebody boundary layer. Surface heating rates for this case are shown

in Figure 6.38. The solution has been made much worse on the tbrebody, while not

much change is seen in the wake. Investigating the solution reveals that a windside

vortex pattern has emerged, Figure 6.39, that is causing the lower heat transfer rates

on the heatshield. The solution was run a thrther 800,000 iterations with no change

to this windside vortex pattern.

Point insertion is tested on the unadapted 16,125-node mesh, seeking to add
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Figure 6.37: Two-dimensional capsule surface heating after moving with curvature

clustering, solid=start, dashed=lO% moved, dash-dot-dot=benchmark.
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Figure 6.38: Two-dimensional capsule surface heating after moving with fluctuation

minimization, solid=start, dashed=lO% moved, dash-dot-dot=benchmark.
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Figure 6.39: Windside vortices produced by fluctuation minimization nodal displace-
ments.

20 percent more nodes. Curvature clustering added 3154 nodes, producing the heating

results shown in Figure 6.40. On the tbrebody, there is improvement in the stagnation

point region, but worsening near the shoulder. On the aftbody and sting the heating

moves somewhat away from the benchmark result. Fluctuation minimization added

3299 nodes, with heating results shown in Figure 6.41. On the heatshield the heating

levels rise markedly toward the benchmark result, but exhibit a high-frequency oscil-

lation of significant amplitude. There is not much change in the heating in the wake

region.

For the thll adaption the starting solution is taken on the triangulated 12.5 x 129

mesh with 16,12.5 nodes, half the number of nodes used to generate the baseline

unadapted solutions. The intention is to look for an improvement in the coarse mesh

solution without increasing the number of nodes. Based upon the results of the

component adaption tests, the strategy for an adaption cycle is to delete 10 percent

of the nodes, swap 1 percent of the edges, move .5 percent of the nodes, and then

insert back in 10 percent of the nodes. The solution is re-converged between each
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Figure 6.40: Two-dimensional capsule surface heating after point insertion with cur-

vature clustering, solid=start, dashed=20% inserted, dash-dot-dot=benchmark.
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Figure 6.41" Two-dimensional capsule surface heating after point insertion with fluc-

tuation minimization, solid=start, dashed=20% inserted, dash-dot-dot=benchmark.
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step of the adaption cycle.

The curvature clustering cycle proceeded by deleting 1637 nodes, swapping 444

edges, moving 696 nodes a total distance of 6.23 in., and adding 1599 nodes. The

resulting heat transt_r plots are shown in Figure 6.42. On the heatshield the stag-

nation region heating has been improved and is now in excellent agreement with the

benchmark. There is no further change in heating over much of the tbrebody between

s = 0.2 0.9, but the heating spike at the shoulder is more tightly resolved. In the

wake region there is little change in heating on the aftbody, while the sting heating

is increased, trending away from the benchmark.

The fluctuation minimization adaption successtully removed 1601 nodes, but ran

into trouble again while swapping. Windside vortices were spawned in the stagnation

region by an oscillating bow shock. In an eftbrt to damp the solution the CFL

number was reduced by an order of magnitude, without producing an improvement

in the solution or eliminating the vortices. The number of edges to be swapped was
1

reduced to 7 percent, but the same vortices and oscillating bow shock appeared.

For this case edge swapping was omitted and the adaption cycle continued with the

nodal displacement step, where 706 nodes were moved a total distance of 0.7 in.

Finally, 1638 nodes were added, yielding the results of Figure 6.43. The tbrebody

heating is generally improved toward the benchmark solution, although there is a

high-frequency oscillation in the data starting at s = 0.6. Heating in the wake is only

slightly changed, though the aftbody heating is improved to match the benchmark

between s = 1.2 1.8.

Axisymmetric

The axisymmetric adaption component testing starts from the the baseline solution

and mesh, which contains 11,125 nodes. The intention is to remove nodes without

altering the surface heat transf?r rates. About 10 percent of the nodes were success-

fully deleted without impacting the solutions using both curvature clustering, 1029

nodes, and fluctuation minimization, 1079 nodes. A close-up of the fluctuation split-

ring mesh is shown in Figure 6.44, where it can be seen that most of the nodes are
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Figure 6.42: Two-dimensional capsule surface heating after full adaption cycle with

curvature clustering, solid=start, dashed=adapted, dash-dot-dot=benchmark.
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Figure 6.43: Two-dimensional capsule surface heating after full adaption cycle with

fluctuation minimization, solid=start, dashed=adapted, dash-dot-dot=benchmark.
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Figure 6.44: Coarsened axisymmetric mesh using fluctuation minimization.

removed from the freestream while a smaller amount are removed from the wake re-

gion. Further point reductions were tried, and the curvature clustering successtully

removed another 1136 nodes with minimal change in the surface heating. However,

removing 1081 more nodes with fluctuation minimization leads to the problem of a

loss of shock capture, as was seen in the two-dimensional results of Figure 6.33. In

this case, the solution deteriorates to an unacceptable level because of the bow shock

blowout.

Edge swapping is started from a mesh tbur times coarser than the baseline, tri-

angulated from 63 x 45 = 2835 nodes, looking tbr the heating predictions to improve

toward the baseline results. The mesh has 8290 edges, and 78, about 1 percent,

with the largest error estimates were swapped using curvature clustering. Figure 6.45

shows the initial and adapted heating rates compared with the baseline solution. The

edge swapping produces only marginal changes in the heating rates. Fluctuation

minimization swapped 88 edges and also shows minor changes in the heating, Fig-

ure 6.46, except at the stagnation point where the adapted heating is dramatically
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Figure 6.45: Axisymmetric capsule surface heating after edge swapping with curvature

clustering, solid=start, dashed=adapted, dash-dot-dot=DMFDSFV baseline.
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Figure 6.46: Axisymmetric capsule surface heating after edge swapping with fluctua-

tion minimization, solid=start, dashed=adapted, dash-dot-dot=fluctuation splitting
baseline.
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Figure 6.47: Shock kinked in toward stagnation point at the z-axis after axisymmetric

edge swapping with fluctuation minimization, velocity contours.

raised well beyond the correct result. Looking at the bow shock in the vicinity of the

nose, Figure 6.47, a sharp kink in toward the body is seen along the axisymmetric

axis. This kink in the bow shock elevates the pressure along the axis and causes the

significant stagnation point heating over-prediction.

The nodal displacement tests start from the same 283a-node meshes and solutions

that were used to start the edge swapping check. Five percent of the nodes were

moved using each scheme without producing a noticeable change in the solutions.

A second pass of node movement was made, this time moving 10 percent of the

nodes. Curvature clustering moved the nodes a total distance of 2.88 in. with an

RMS of 0.017 in. The movement was performed at the bow shock and in the forebody

boundary layer. The results, shown in Figure 6.48, show minimal change with a slight

smoothing of the prediction on the heatshield between s = 0.2 0.5. With fluctuation

minimization the nodes were moved a total distance of 0.18 in. with an RMS of

0.0015 in. Most of this movement was in the shock near the axis. Figure 6.49 shows

basically no change to the heating levels due to the nodal displacements.
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Figure 6.48: Axisymmetric capsule surface heating after nodal displacements with

curvature clustering, solid=start, dashed=10% moved, dash-dot-dot=DMFDSFV
baseline.
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Figure 6.49: Axisymmetric capsule surface heating after nodal displacements with

fluctuation minimization, solid=start, dashed=10% moved, dash-dot-dot=fluctuation

splitting baseline.
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Point insertion is applied to the coarse 2835-node mesh using both schemes to add

10 percent more nodes. Curvature clustering added 283 nodes at the shock and in the

windside boundary layer, but does not change the surface heating appreciably, Fig-

ure 6.50. Fluctuation minimization added 287 nodes, also in the shock and windside

boundary layer. While the average heating levels on the forebody remain roughly the

same, Figure 6.51 shows a wild oscillation in the surface heating has been introduced

with the additional nodes. The sting heating shows a small reduction, but does not

exhibit a clear improvement.

For the full axisymmetrie adaption procedure a cycle is defined similar to the

cycle fbr two dimensions. Starting from a converged solution on a mesh with half the

number of nodes as the baseline, 125 x 45 versus 125 x 89, 10 percent of the nodes are

deleted, 1 percent of the edges are swapped, 5 percent of the nodes are moved, and

then 10 percent more nodes are added back. The solution is re-converged between

each step of adaption.

Curvature clustering deleted 560 of the 5625 nodes, primarily from the freestream

but also from the wake and in the sting/vehicle juncture. Of the 14,941 remaining

edges, the 150 with the largest error estimates were swapped. These edges were

located in the bow shock and in the tbrebody boundary layer. Then the 253 nodes

with the largest error estimates were moved. These nodes were also in the shock

and tbrebody boundary layer. The nodes were moved a total distance of 1.2 in. with

an RMS of 0.007 in. Finally, 570 nodes were added, enriching both the shock and

the boundary layer. The results of the adaption cycle are shown in Figure 6.52.

Essentially no change in surface heating is seen due to the adaption, other than a

smoothing of the originally oscillatory data on the sting.

Fluctuation minimization ran into problems with deleting nodes from the starting

mesh tbr the full adaption test. Deleting 10 percent of the nodes proved to be too

aggressive, leading to a loss of the bow shock capture. So the adaption cycle was mod-

ified to only delete and insert 5 percent of the nodes, rather than the original target of

10 percent. Deletion was successtul removing 263 points entirely from the freestream.

Edge swapping was viable tbr this case as 159 edges were swapped. The problems en-

countered during the two-dimensional edge swapping were not encountered with the
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line.



218 CHAPTER 6. SYSTEM MESH ADAPTION

0.015

0.0125

q

p_v_T
0 .01

0.0075

0.005

0.0025

, \_

_ i /_ I_

: ',/':,

i/ ''I I

I I

I I

I I

I I I I I I I I I I I

0.5 1

S, in.

i i i I

1.5

(a) Heatshield.

0.001 --

0.0008 -

q

0.0006 --

0.0004 -

0.0002 -

0 -I

1

I I I I I I I I I I I I I I I I I I I

2 3 4 5

S, in.

(b) Aftbody and sting.

Figure 6.51: Axisymmetric capsule surface heating after point insertion with fluc-

tuation minilnization, solid=start, dashed=10% inserted, dash-dot-dot=fluctuation

splitting baseline.



6.4. MARS PATHFINDER 219

0.015

0.0125

p_V_
0 .01

0.0075

0.005

0.0025

-I _ II

i ,;}..

I i i i i I i i i i I

0.5 1 1.5

S, in.

(a) Heatshield.

0.001 --

0.0008 -

q .
po_V_

0.0006

0.0004

0.0002

0 --I

1

"" %

j. 4 "_-o° _

,J'"

/s

j.f"

/'"

• ,.-- ° \_J

i i i i tl i i i i I i i i i I i i i i I

2 3 4 5

S, in.

(b) Aftbody and sting.

Figure 6.52: Axisymmetric capsule surface heating after thll adaption cycle with cur-

vature clustering, solid=start, dashed=adapted, dash-dot-do_=DMFDSFV baseline.
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axisymmetric case. The nodal displacements were performed primarily at the shock

with a small amount moved in the boundary layer, for a total of 268 nodes moved a

distance of 0.22 in., RMS of 0.002 in. Point insertion added 280 nodes, mainly at the

shock but also a small amount in the forebody boundary layer. The results of the

adaption cycle are shown in Figure 6.53. Most of the heatshield remains unchanged

except for an improvement between s = 0.3 0.7 and a change in the stagnation point

trend from being a large under-prediction to being a large over-prediction. Heating

in the wake is largely unchanged other than an increase at the tail end of the sting.

6.5 Discussion

The primary new development of this chapter is the extension of the characteristic

alignment mesh adaption strategy to the Navier-Stokes system of equations by a

generalization of the fluctuation minimization tbrmulas originally developed tbr the

scalar advection-diffusion equation. Particular emphasis is placed on tbrmulating the

nodal displacement tbrcing thnctions tbr the upwind, positive, linearity preserving

fluctuation splitting distribution scheme consistently in both axisymmetric and two-

dimensional coordinates.

The main test is a hypersonic, perfect gas wind tunnel case tbr a Martian probe

model, configured tbr both the real axisymlnetic geometry and the corresponding

two-dimensional geometry. In considering the unadapted results, the two-dimension-

al baseline solutions tbr both fluctuation splitting and DMFDSFV are obtained on the

125 x 257 mesh, the same mesh tbr which the LAURA benchmark is grid converged,

aside from at the stagnation point. The fluctuation splitting surface pressures are

in excellent agreement with the benchmark while the DMFDSFV surface pressures

match the benchmark on the heatshield but do not match well in the wake. For the

tbrebody heating fluctuation splitting shows excellent agreement with the benchmark

aside from at the stagnation point while the DMFDSFV result is consistently high.

The aft heating is about the same tbr both schemes, reasonably agreeing with the

benchmark.
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For the axisymmetric unadapted results, the baseline solutions tbr both unstruc-

tured schemes are obtained on the 125 x 89 mesh, which is a factor of tbur coarser

than the mesh that Hollis had to use to get good results with the structured finite

volume code NEQ2D. DMFDSFV surface pressures are excellent on the forebody,

very good on the aftbody, but a little high on the sting between s = 2.5 3.5. The

fluctuation splitting pressures are a little low on the tbrebody and excellent in the

wake, splitting the difference between the two benchmark datasets. The fluctuation

splitting tbrebody heating is an excellent match with the benchmark, aside from at

the stagnation point. DMFDSFV over-predicts the tbrebody heating. Both schemes

produce an excellent match with the benchmark in the wake, splitting the difference

between the two computational benchmarks on the sting.

In testing the component adaption techniques point deletion is the most beneficial

tool. Coarsening works well removing up to about 20 percent of the nodes, but when

taken too far leads to a loss of the bow shock capture, and a rapidly deteriorating

solution. The other adaption techniques generally have minimal or negative impacts

on the solution, with the exception of point insertion with fluctuation minimization

where a little solution improvement occurs. Curvature clustering produces nodal dis-

placements on the order of ten times larger than fluctuation minimization tbr the

same number of points moved, but the fluctuation splitting solutions on the con-

torted meshes are less robust. The lack of robustness is usually caused by distortions

to the bow shock near the symmetry axis. Common failure modes are an oscillating

shock shedding windside vortices or a steady shock kink producing unexpected pres-

sure contours and surface heating spikes. The root cause is that the local, compact

adaption techniques employed here are mis-aligning the mesh with the bow shock.

The typical behavior is that the fluctuation splitting scheme is more sensitive to grid

perturbations introduced by the fluctuation minimization adaption in corrupting the

solution, but is generally more accurate than DMFDSFV on suitable meshes. The

component tests indicate that the mesh adaption tbr systems can not be nearly as

aggressive as was possible tbr scalar equations.

For the full adaption cycle in two dimensions with curvature clustering the heating

in the stagnation region and at the shoulder improves, the sting heating is worse, and
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the rest of the vehicle sees no change. With fluctuation minimization the tbrebody

heating improves but becomes oscillatory, the aftbody is the same, and the sting

improves. For the axisymmetric case the curvature clustering cycle does not change

the magnitude of the heating but does smooth the initially rough heating on the sting.

Fluctuation minimization produces some improvement over a quarter of the heatshield

but also makes the sting heating a little worse at the tail end, leaving the rest of

the heating unchanged. Although heat transfer is a variable of primary interest tbr

aerothermodynamics and may be a first consideration tbr driving the adaption criteria,

the present results emphasize that tbr blunt-body hypersonic aerothermodynamics

the bow shock placement is critical to the tbrebody heat transfer rates. Due to the

strength of the hypersonic bow shock, discrete jumps in shock position from one node

to another produce significant pressure disturbance waves which strongly affect the

flowfield in the subsonic bubble and can overwhelm more subtle adaption within the

boundary layer.

To conclude, the adaption techniques do not significantly improve the solutions,

the adaption effectiveness is not consistent, and the solutions display a lack of robust-

ness. Point deletion works the best, but is risky if applied too aggressively. These

results indicate that the extension of characteristic alignment based adaption from

scalar problems to the Navier-Stokes system is not straightforward due to the non-

uniqueness of the characteristics and the complexity of the flowfield features which

are not adequately modeled by the minimization of a single functional based upon

fluctuations as tbrmulated here.

These local adaption strategies are designed to be synergistic with the compact

solvers, and are attractive candidates tbr parallelization, but the present results may

be indicating that the adaption requires a global view to introduce a level of smooth-

ness. Dr. Peter Gnoflb[123] has suggested reworking the adaption strategies to in-

crease the support of the diseretization stencil. Such an increased stencil may allow

tbr the introduction of smoothing parameters or other grid-quality controls, but at the

expense of requiring more than nearest-neighbor communications, complicating any

extension to a parallel computing strategy. The upper limit on an increased stencil

would be a fully implicit treatlnent.
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As a post-note to this chapter, Yamaleev and Carpenter[124] have recently pre-

sented a very detailed mathematical analysis of the effect of grid adaption for super-

sonic blunt bodies in the context of second and fburth-order structured finite volume

schemes. They specifically consider nodal displacements and point insertion, conclud-

ing, "The grid refinement study shows that for the second-order scheme, neither grid

adaptation strategy improves the numerical solution accuracy..." For the fourth-

order scheme the situation is worse because, "... the design-order error component

drastically increases because of the grid nonunitbrmity." A consensus on adaption

guidelines for general supersonic flows with captured multi-dimensional discontinu-

ities remains elusive, for both structured and unstructured meshes.



Chapter 7

Summary and Recommendations

This report addresses the suitability of fluctuation splitting tbr hypersonic aerother-

modynamics. A desirable aerothermodynamic solver must be robust in the presence

of strong shocks, meaning that the solution must remain stable and positive with-

out radiating dispersion or phase errors. The desirable scheme must also be of high

accuracy to resolve the derivative quantities heat transfer and shear stress, and thus

should be non-diffusive. The classic approach to reconciling these two criteria is the

construction of a non-linear second-order scheme with reduction to first-order in the

vicinity of captured discontinuities. Perhaps the most popular of these schemes tbr

unstructured meshes is finite volume with Roe upwind flux difl'erenee splitting and

limited linear reconstruction (referred to as DMFDSFV here). A drawback to this

scheme is the reliance upon a locally one-dimensional approximate Riemann solver

even when applied in two and three dimensions. Fluctuation splitting possesses the

benefits of the traditional scheme and adds a truly multi-dimensional upwind distri-

bution. But the discussion of a flow solver independent of the computational domain

is only of academic interest, so this report also seeks to develop a mesh adaption

scheme in conjunction with the desirable solver to improve the results and reduce the

expense of analyzing a vehicle geometry.

The fluctuation splitting scheme considered here had been introduced by Sidilkover

as the optimal compact zero-cross-difl'usion solver for linear hyperbolic equations,

with an extension to the two-dimensional Euler equations on Cartesian grids. The

225
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tbrmulation lacked eigenvalue limiting, an axisymmetric derivation, and a viscous

coupling, had not been demonstrated on a general unstructured mesh, was untested

tbr non-linear advection-diffusion, had not been applied to a hypersonic problem, had

not been used to calculate heat transfer, and had never been evaluated relative to the

current most popular strategy DMFDSFV. The evaluation of fluctuation splitting

begins by proving the equivalence of DMFDSFV and fluctuation splitting in one

dimension along with a strategy tbr viscous coupling to the inviscid flux distribution.

Then the extension of both schemes to scalar two-dimensional problems is detailed to

underscore the fundamental differences between a Inulti-dimensional upwinding and

the locally one-dimensional treatment, with particular emphasis on the production of

artificial dissipation. The superiority of fluctuation splitting over DMFDSFV tbr both

linear and non-linear advection-diflhsion is demonstrated and a new mesh adaption

strategy tbr scalar problems is developed to exploit characteristic alignment with

fluctuation splitting. This adaption scheme maintains the tully local, compact stencil

of fluctuation splitting to allow tbr future parallelization and use on computer clusters,

and is able to produce accuracy and efficiency gains tbr the scalar problems.

The details of extending multi-dimensional upwind fluctuation splitting to a prac-

tical aerothermodynamic solver tbr the two-dimensional and axisymmetric Navier-

Stokes equations are detailed and a suite of verification and validation cases compares

the fluctuation splitting and DMFDSFV schemes. Fluctuation splitting is still to be

preferred over DMFDSFV tbr the system of equations, more so tbr viscous problems

than inviscid, but the difference is not as dramatic as is seen tbr the scalar model

problems. While fluctuation splitting should certainly be considered as a viable alter-

native to DMFDSFV when selecting algorithms tbr code development, the differences

in capability demonstrated here are not significant enough to obsolete existing codes

based upon DMFDSFV technology.

The characteristic alignment mesh adaption strategy is extended to two-dimen-

sional and axisymmetric systems as a generalized tbrm of fluctuation minimization.

The practical implementation tbr systems proves to be very difficult, and in the cur-

rent adaption framework only the point deletion strategy is recommended. None of
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the other adaption components produce significant accuracy improvements and of-

ten lead to a loss of robustness of the solver. For inviscid or subsonic flows where

heating is not an issue, perhaps the current adaption could be of use. For aerother-

modynamics though, the local adaption strategy as it is currently presented is not

recommended.

Parallelization of the fluctuation splitting scheme appears to be attractive because

of the compact stencil. The weak implementation of the boundary conditions devel-

oped here should be an enabling mechanism tbr exchanging boundary data between

partitioned sub-domains in a parallelized scheme. Another significant operational im-

provement could be made by casting the fluctuation splitting in an implicit scheme,

with either a point-implicit or colored strategy the most likely tbrmat. Two-equation

field models tbr turbulence appear to be the best path tbr extending the current fluc-

tuation splitting tbrmulation to Reynolds and Farve-averaged flows. One remaining

significant unknown tbr fluctuation splitting with regards to aerothermodynamic ca-

pability is the inclusion of thermal and chemical non-equilibrium. In particular, the

transtbrmation of the flux Jacobian to auxiliary variables may not yield an easily

factorizable system. Appendix B expresses the linearizations and transtbrmations in

terms of a general gas, but all the details of such an extension need to be worked out

betbre a fair assessment of implementing a non-equilibrium scheme can be made.

Modifications to the adaption strategy tbr increased robustness should relax the

constraint that the adaption be as compact as the solver, tbcusing on some tbrm of

increased stencil as a means to introduce smoothing. Perhaps, though, a completely

different adaption strategy is called tbr, something with a scatlblding analogy by which

the bow shock, embedded shocks, vortices, and other inviscid phenomenon are Darned

with lines or shell elements while the gaps in the mesh framework are filled in with

an unstructured triangulation. Whatever adaption strategy is pursued, the present

results underscore the need tbr excellent bow shock alignment as a prerequisite to

boundary layer refinement tbr the hypersonic blunt-body problem.
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Appendix A

Limiters

A limiter is a function used to limit, the ratio of two values, satist)ing,

_(o) = 0, ¢(1) =

A symmetric limiter is defined by,

(A._)

(a.2)

Symmetric limiters can also be expressed in terms of symmetric averaging functions,

Me,, obeying,

q_(P) = M_(p,q)= M_(q,p)=p_(;) (A.3)

A limiter that can achieve a value greater than unity is termed a compressive limiter.

Degenerate limiters

Two degenerate, non-symmetric limiters, satist}'ing only one of the constraints in

Eqn. A.1, are useful. The first order limiter, ¢ = M.e = 0, is employed to limit a

scheme to first order spatial accuracy. In contrast, an unlimited scheme results from

the choice ¢ = 1.
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Minmod

The Minmod limiter[125] is a non-compressive, symmetric limiter defined as,

_o(P-_ =max(0, min(1, p/q))
\q/

or_

(A.4)

The Minmod limiter is the non-compressive limit of a generalized limiter of

Sweby[126]. Minmod is achieved by setting the parameter c = 1. The upper limit on

_(p, q) =

c is the Superbee linfiter[127], c = 2.

0

cp/q

1 if
P/q

g

0

cp

q if

P

cq

1), rain(p/q, c)] (A.7)

pqGO

clpl _ Iql

Ipl_lql_ clpl

Iql _ Ipl _ clql

clql_ Ipl

pq_O

clpl_ Iql

Ipl_lql _ clpl

Iql_lpl_ clql

clql _ Ipl

Similar, non-symmetric limiters have been proposed by Chakravarthy[128],

(A.8)

(A.9)

= max[0, rain(p/q, c)] (A.10)

0 pq<_O
_b._=(P) p/q if ,p,<_,q, (a.5)

Ipl_>lql

The associated averaging thnction is,

0 pq<_O
;_,(p,q) = p if Ipl-<lql (a.6)

q Ipl_>lql
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and Barth[22],
/ \

The upper bound on these limiters is 1 < c < 2.

(A.11)

Van Leer

The harmonic Van Leer limiter[4] is a symmetric compressive limiter with an upper

bound of 2.

- 1+1_1 q_+lpql

Iplq+ plql
_- Ipl+lql

Ipl+lql_
Ipl+lql

(A.12)

(A.13)

Van Albada

The Van Albada limit er[129] is a symmetric, diflhrentiable compressive limiter with

an upper bound of 1.18.

pZ+e2 _]_ p p2 £2 2 pq2+_2 _ + +(q2+e)__
1 -_- Pz+e2 p2 __ £2 Jr- q2 q_ £2

q2+c_

(A.14)

(Pq + c2)(P + q) (A.15)
Me = p2+q2+2c2

For this limiter the small parameter, c, serves to reduce the limiting in smooth

regions. Assuming (9(1) variations over a normalized distance, this parameter is

scaled as c 2 _ _3, where g is the mesh spacing.

Van Albada presents the averaging thnction as in Eqn. A.15. Limiter-thnction

fbrms have been presented corresponding to this averaging function in popular sources,

such Hirsch[125]. Denoting the ratios p/q by r and c/q by s, the limiter presented in

these sources is,
(_ + 1)_

_(r) -- r2 + 1

which, lacking c, differs from Eqn. A.14,

(_+ 1)(_ + _)
_(r) r 2 + 1 + 2s 2
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The more popular forms of this limiter do not turn off' in smooth regions, thus missing

an essential thature of the original Van Albada tbrmulation.



Appendix B

Governing Equations

B.1 Compressible Continuum Gas Dynamics

The Navier[87]-Stokes[88] equations of mass, momentum, and energy conservation tbr

compressible gas dynamics are presented. The formulations are in terms of Cartesian

coordinates, but include an axisymmetric source term, 1 B, which is set to zero tbr

two-dimensional and three-dimensional applications.

The derivation of the equations assume a Newtonian stress-strain relationship,

Stokes hypothesis on the bulk viscosity, Fourier's law tbr heat conduction, no body

fbrces, and no external heat addition.

Non-dimensionalization is perfbrmed tbr the fbllowing quantities as: length, L,.<f,

velocity, l_, time, L_<t./V_ , energy, V_, density, poo, pressure, pool_, viscosity,/,_,

temperature, T_, thermal conductivity, p_V_/Too, and gas constant and specific

heats, V_/Too.

The Reynolds number appearing in the non-dimensional equation is defined,

1The axisymmetric source terms were derived from the orthogonal curvilinear formulations of

Back[130] and Anderson, Tannehill, and Pletcher[89].
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B.1.1 Vector Notation

The system can be expressed in conserved variables as,

¢._Ut + = -_B (B.2)

where F = _i _ i_v, B = B i - B _', and,

U = pV T

_i = fl_T PI

pVH

(B.3)

(B.4)

(B._)

(B.6)

B+: ±i,o+,v+l (_)
Y\_vH/

( o )BV _ 1 r .-, .-, -, 1T

R++y [#()\Vv)y_v(L_)2(°,_)_J (B.8)
_r_ + #_:.(vy+ vv) - _r.v(#_) - 4_?.t_

is the axisymmetric flag, equal to unity for axisymmetrie equations and equal to

zero for Cartesian equations.

Alternatively, Yu[131] shows the equations can be written,

_,+Ut + V'(_F) = _B' (B.9)

where,

_ = 1 - _ + _y (B.10)
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and

B' = B'_ - B '_ (B.11)

B '_ = (0, O, P, O) T (B.12)

( )T

• 1 2lzv 2

B '_' - /_ 0,0, Y 3/zV'l:'O (B.13)

Also, when using the form Eqn. B.9 the divergence of the velocity in the viscous

terms, F v and B/_', is replaced by,

V-V --+ .(_v_V) = V.I ? +- - V-V +- (B.14)
"CD'a "_a Y

B.1.2 Two-Dimensional/Axisymmetric Indicial Notation

The axisymmetric source terms are included in braces {}.

Continuity:

v

_._ + _(._)_ + (_.% = o

= -=Dv}

(B.15)

(B.16)

(B.17)

Momentum-x:

(._)_ + (S + P)_ + (._v)_ - R_. [,(2_- _,)]_+ [.% + _)],

y + _-_

(B.18)

=_(P_)_+ _('_ + P)_ + =°(P__')' - n_ 5['(2_ - _)]_ + ['(_' + _'_)]_

1 2 ,
+v:; {-pnv+'-_ [#(_ty+v_) - -_(l_f)_] } (B.19)

{#v}_ (B.20)
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Momentum-y:

(pv)t+ (puv)x+ (,ov2+P)y - 1 ( 2 )

_{ 1 [ 2 4_]}

(Bin)

Energy:

(pE)tq-(puH)x+(pvH)y= _ (nT_)x+(nTy)y+ . -

+_ -,_ + _T_+ ,(_(_+_) +2_)y

3(_("_')_+ v(,v)_)- _,_(_ + _)

+ [, (_(2_- _) + _'(_ + _))] x

3(_(,,_,)x+ v(fv)p - _,_(_ + _)
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1
_a(PE)t -_-_a(p_tH)z + (_-JaflvH)v -

R_o_
_ga ( t_ Tx ) x -_- ( _Ya l_ Ty ) y

B.2 Linearizations

The inviscid flux Jaeobian is defined as,

For a general gas in two dimensions with,

OP OP

Op_t _ OpE'

the Jaeobian is,

--e.

OF t

OU
(B.27)

OP OP

Opv - V opE (B.28)

0 1 0 0 ]
A × = p._ _2 _t(2- P,z) -veoz epE

0
(B.29)

o on y =
Pp- v_ -_Pp_ _(2- P,_) P,_

Lv(P,- H) -=_P,E H- v_Pp_ _(_ + P,_)j

(B.30)

The projection of the Jacobian onto a unit vector can be written in compact notation,

0 f_ 0 ]A-.fi = Pp@,f-- "FV f "P[ + I/_T_?t_ fifl?ppz fzfppz (B.31)

Lv(Pp- H) m_- vCP_ v(_+ P_E)J
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--e

where the projected velocity is F = V.fi.

Specializing to an ideal gas with an equation of state,

P
2p

Z

pp _ _,- 1 v2 ' PpE = o'- 1
2

(B.32)

(B.33)

where V 2 = 1/. l? = u 2 + v 2, the Jacobian becomes,

0 1 0 0 ]

A × = -_ 2V2- u2 -_(7- 3) -v(7- 1) 7 _- 1 (B.34)

--%tV V it

U

_(_v 2- _) H- _(_- 1) -_(_- _) _ j

0 0 1 0 1

= -- try V tt 0

AY / _!V2- v2 -u(7- 1) -v(7- 3) 7- 1

L_(_v_- H) -_v(_- x) H- v_(o_-_) o_v

(B.35)

The projected Jacobian is,

0 n x nY 0 ]-,_V+_@V2_ x V-('7-2)',_ x ,._Y-(?-l)v_ x (?-i> x

[V(_V_-H) s,,x-(_->,Vm,,-(_-l)w _v j

The eigensystem tbr the projected Jacobian is tbrmed as,

X.iz = XAX -1 (B.37)

The eigenvalues are,

A = diag(Y, V, F + a, F - a) (B.38)

with the sound speed defined,

"TP
a 2 - (B.39)

P
x ]
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The associated eigenvectors are the columns of X,

[i0 1-nY u + an x u - anX (B.40)
X _ 17_x v Jr- cI,Tt y v - gl?_y

w_×-uny H+aF H-aYJ

B.3 Variable Transformations

Transformations of the dependent, variables can be perfbrmed from the conserved

variables, Eqn. B.3, to the primitive variables,

V = (B.41)

satisfying dU = UvdV, dV = VvdU, and U_) = Vv. For a general gas, the

transfbrmation matrices are,

o:]UV = T_T /9[ (B.42)

V 2 Pp piT"

[, 0 07

While a perfec_ gas assumption leads to,

I °i]UV = V T /9[

[; 0 0]VU = __ __T 1[ 0
P

L-_v_ -(_- _)_ _-

(B.44)

(B.4_)
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The projected flux Jacobian, Eqn. B.31, can be transformed as,

- (x)fi.Ap =Vu "_ Uv (B.46)

For a general gas, Eqn. B.46 leads to,

pfi 0 ]fi.fi*p = 12I 7 ].[P,- P._(w_- H)>

(B.47)

while the perfect gas version is,

IF pfi 0 ]

_z.Ap = VI ,

?'Pfi F

Introducing the auxiliary variables such that,

(
.w : [_._._] (B.49/

where ds = dp--_dP, a transtbrmation from the primitive variables can be introduced

satisfying dV = Vw dW, dW = Wv dV, and Vw 1 = Wv, with,

Vw = lI (B.50)
P

0

Wv = pI (B.51)

0
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The projected flux Jacobian can be transtbrmed accordingly,

= 12I

[ep- epE(v 2- H)]¢_

0]fir

F
[!012I

a2fi

The eigensystem of Eqn. B.54 can be expressed as,

_..A = XAX -1

(B.52)

(B.53)

(B.54)

(B.55)

where the eigenvalues remain the same as for Eqn. B.38,

A = diag(12, V, 12 + a, 12 - a) (B.56)

and the eigenvectors are,

X

l 0 0 0 ]

_fix _g _g

0 e -a

X--1 z [i0001fly _fix

1-x ½fg

1-x ½fg

The conversion from conserved to auxiliary variables is,

(B.57)

(B.58)

dU = Uv dV = UvVw dW = Uw dW

dW =WvdV=WvV_dU=WvdU

(B.59)

(B.60)
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For a perfect gas, these matrices are,

gw z

1

1 0 7

_TT I ±g-T

V_ I_ 1 To

[2 -)
= /--vT

L_v_
oI

-(v- 1)¢ v

where the enthalpy is obtained from the total enthalpy,

V 2

h =H---
2

and the stagnation temperature is defined,

To =1+7-1M2
T 2

(B.61)

(B.62)

(B.63)

(B.64)



Appendix C

Axisymmetric Source Term

Integration

C.1 Inviscid

The perfect-gas inviscid axisymmetric source term can be written either in the fbrm

of Eqn. B.7 as,

B =Z3Z (C.I)
Y

or in the alternate form of Eqn. B.12 as,

[ (B' = [0, 0, P. 0] T = 0, 0, 7-______12124 22 -_- Z2 0 (C.2)
' 7 2 '

The parameter vector, Z, is assumed to vary linearly over a triangular element t_.

The integration of B over t_ is pertbrmed by subdividing t_ into thirds along the

median-dual mesh, as depicted in Figure C.1. Notice that each sub-element t_i is a

quadrilateral over which the parameter vector varies linearly. Also, the area of each

t2i is one-third of the area of the triangular element,

_qi = S_ = ST (C.3)
i 3
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1 2
W W

Figure C.1: Subdivision of' triangular element into three quadrilateral integration

areas. Dashed lines are the median-dual mesh.

A linear variation, say of' the mth element of Z, can be represented as,

1

1

- 2sT_j_z_ [(_- _:_)(y_ - y_) + (y- y_)(_- _:_)]

(c.4)

where,

a,rt _ ---- ,_T/T_l (,_'2y 3 -- J_'3y,)) --_ ,Zm2 (x3y 1 - xlY3) -- ,Z_,n3 (.z-ly 2 - x2Yl)

= cijkZ,,_j(zkyi - ziyk)
(c.5)

brr_ = Zml(_/2 -- Y3) -[- Z71,_2 (Y3 -- Yl) -[- Zm3(Yl - Y2)

= cijkZ,_j (yk - yi)
(c.6)

Cm : ,_ml(X3- X2) -F ,_m2 (Xl -- X3) Jr- ,Z_,n3 (x 2 - Xl)

= cij_Z',,_j(zi - z_)
(c.7)

In this appendix, Gjk is used to represent the cyclic permutation summation operator.
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C.I.1 Integration of Eqn. C.2

The only non-zero term in Eqn. C.2 is B_ = P. The integration over a quadrilateral

sub-element can be broken out as,

J_ P d_i -_?'- l J_ ZiZ4 d_i _/- l ff_I

For a linear variation of Z, a typical term of Eqn. C.8 can be written,

i i

'Ji- 4s_ [_m_,_+ (_b. + a,_b._).+ ("m_.+ _,,_)Y
i

(c.9)

+ (b._c,_ + b,_c._)xy + b._bnx 2 + cmc,_y 2] dt_i

where the coefficients are,

1 2

1r xi 7(xi+-zi)
1

t y_ 5(Y_+-Y_)

the mapping

i- i i+

3 1 2

1 2 3

2 3 1

from (x, y) to (_, rl)is,

x(_, 'TI) = rl + r2_ + raT] + r4_T]

3 4

11(__ _ _) _(___ + 2_- _+)
½(Yi--- Yi) 1-g(-Yi- + 2yi - Yi+)

Equation C.3 leads directly to,

i = --_-aman

The remaining integrals in Eqn. C.9 are evaluated using a bilinear mapping to a

unit square in (_, _]) space. Introducing the notation i- and i+ to represent the node

clockwise/counter-clockwise, respectively, from node i on triangle _, ie,
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runs from node i, _ = 0, to the midpoint of side ii+, _ = 1. _l runs from node i,

r] = 0, to the midpoint of side ii-, _1= 1. (_, rj) = (1, 1) corresponds to the centroid

of t_. The inverse Jacobian of the transfbrmation is,

j-1 = x_y_,- x,ye = T 1- 5 (_+ 'j) (c.13)

and a transformed diffbrential area element is,

dt_i = j-1 d_dr] (C.14)

Using the triangle centroid coordinates,

xl + x2 + x3

3

the integrations in Eqn. C.9 take the following forms,

ST (72 + 5x_)

/_ ST,._yd_i = -x-2oi _Y + 5yi)
i

Yl + Y2 + Y3

E 3]2 zy d_ i = ST 142_ -t- ll(xi_ -t- 2yi) -t- 9xiyi -t- _ xjyj
i 144 j 1

( 3j)2 x dt_i -- ST 1422 -- 22xi2 q- 9x_ q- E x
i 144 j 1

(c.1_)

(c.16)

(c.17)

(c.18)

(c.19)

( ±/y2 dt_i = ST 14f 2 + 22yi[/+ 9y_ + yj (C.20)
144 j 1 /

C.1.2 Integration of Eqn. C.1

The integration of the axisymmetric source term, as given in Eqn. C.1, over a quadri-

- 4S_- _ Y (a3 + bax + c3y)(a_ + b._z + c._y) dt_i

= BT1 q- BT2 + BT:3 -t- BT4

lateral sub-element is,

B,_ dt_i =
i

(c.21)



C.1. INVISCfD 247

where,

and,

BT 1 __ Ct3Cra -- arnc3 /fi- 4s_ d_i (c.22)
i

BT2 bac,_ + bmc3 /_- 4S_- x d_i (C.23)
i

C3 Cm /_BT3 - 4S_ ydf_i (C.24)
i

BT4 - 4S_ i Y [a3am -_- (a3bm -_- arab3) x -_ b3brn x2] d_ i (C.25)

Equation C.3 leads directly to the first integral,

BT1 = asc,_ + amc8 (C.26)
12ST

Using the same bilinear mapping to ((, _]) space as was described in the previous

section, Eqn. C.23 can be written,

VT2-b3crn+bmcs_lffol ( ) @4S_ (rl + r2_ + r371+ r4[Tl) 1 _ 4-3_l d_ d_l

b3cm + bmc3 (C.27)
- [24T1 + 11 (r2 _- 7`3) + 57"4]

288ST

Similarly, Eqn. C.24 becomes,

BT3 - cac,_ [24tl + 11 (t2 + ta) + 5t4] (C.28)
288ST

BT4 in Eqn. C.25 is thrther simplified,

BT4 = BT41 + BT42 + BT48 (c.29)

where,

BT41 - aaa,_4S_/_i Yl dt_i (C.30)

BT42 = aab,_ + a,_b8 /_ _ dt_i (C.31)4S_ _ y

b8b,_ /_ x 2- --d_ (c.32)
BT43 49_ i Y
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Using the coordinate mapping in Eqns. C.11 C.12 to transfbrm Eqn. C.30 leads

to_

BT41 - a3amffolffol 3-_-_] d_dT]24ST tl + t2_ + t371 + t4_/]

24STaaam[ff0"1111(tl + t2 + (ta + t4)7]) (tl+ t3/] t2 lt4/]) (3--/]++

1 ]1 In + (C.33)- t_
Options tbr evaluating the remaining integral in Eqn. C.33 are to expand the natural

logarithm in a series expansion as,

in ( _1-_-_2-_-(t3-_-_4)/])tl-_-t3/] = lI1 ( _1_-_2)tl

_- 2 2_'_ ] 2(_1 + t2) + (t3 + t4)/] (C.34)- 2tl + t3'/]J

or to resort to a numerical integration scheme, such as Gaussian quadrature.

Equation C.31 can be transtbrmed as,

BT42 = a3bm + amb3 /ol /o'1rl + r2_ + r3/] + r4_7] (3 - _ - 7]) d_ dT]24STt1+ t2_ + t37] + t4_7]

a3bm+amb3/olffo4 1 (C.35)24ST (t_ q- t37']) q- (t 2 q- t47]) _

• {(7-1+ 7._/])(3-/]) + [(_ + 7.4/])(3- ,)- (_ + _,)] _- (7._+ _,)_} _/]

The components of Eqn. C.35 are evaluated as,

(tl _- t37]) _- (t2 _- t47])_ = t2 _- t47] _k _:l _- t3/]J0 /
(c.36)

,/0 1 ,/0 1 (7"2 _- 7'4'/])(3 -- ') -- (7.1 _- 7.3?])

[' 1-- t4 _ + 1 + (37.4 -- r2 -- 7"3) _ -- t2 In + 1
t_ (c.37)

r4 r4t2 r4t2 ,/'01- -- + --in It2 + t41- -- 1,1It2 + t4/]l d/]
2t4 t_ t_

,/01 [(7.2 + 7"47])(3 -- 7]) -- (r1+ 7.37])] (tl+t37]) (t2+t4/] )- (t_+ t_/])_ In _+ + 1 d/]
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t/i 1 r2 + r4_1 t47])_2 d_d_ 1

/i1_+_,,,{, t_+,_,,[ _+t_,ln(t_+t_+(t_+td,)]}_ '

r2 in t4 r4 r4t2 t4 1 r2t_ r2t_- 2t4 _ + 1 + 2t4 2t] In _ + + t4(t2 + t4) t2t4

[ ] r4,,[r2t3 + r4tl t4 + t2 1 - -- t2 + t4 - 2t2 In

ff'o1(r2 -l- r47])(t1+ t3'1)21n ( t2 + t471)+ (t_+ _,)_ _+ + 1 _l

(c.3s)

t2 + t4

Finally, Eqn. C.32 is transformed to,

b3bm /1/1 (Yl -]- T2_-]- 7"37]̀-_- r4_7]) 2 (3 -- _-- 7]) d_dT]
BT43

24ST Jo Jo tl + t2# + t3_l + t4_l

_ b3brn ['1 f 1 1 {(r1+r3@2(3__l ) (C.39)
24ST Jo Jo tl + t2_ + t371 + t4_]

+ [2(_1+ _,)(_ + _4,)(3- ,) - (_1+ _,)_]
+ [0_ + wjT(3 -,) - 2(_1+ _)(__ + _4_1)]_2- (__+ _4_)__} _ _,l

= BT431 + BT432 -}- BT433 + BT434

where,

BT4a b3bm /ol (/i I d_ ) d7]- 24Sr (7"1 @- 7"3?])2(3 -- 7]) tl -_" t2_ -_- t37] -]- t4_ 7]

/_T432 -
24ST Jo

(/i tl + t2( + t3'q + t4_]

BT433 - b3bm / 1
24ST./0 [(r2 -_-Y47])2( 3 -- ?]) -- 2(7"1 _- 1_3/])(7"2 -_- r4.)]

tl + t2_ + ta'q + t4_71

(c.4o)

(C.41)

(c.42)

BT434 - babm /11 (fl _3d_ ) dT]24ST (r2 + r4q) 2 tL + t2_ + t8_l + t4_l
(C.43)
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Integrating Eqns. C.40 C.43 with respect, to _ and then r], where possible, yields,

BT431- b3b'_ /ol (rl + ra_l)2(3 - Tl) ln ( t2 + t4_] + X) dT]24STt2 + t471 _ + t371 (C.44)

__ b3bm fl [2(T 1 __ r37])(T2 __ T47])( s _ 7]) -- (7"1 _- 7"37]) 2 ]
BT432

24ST Jo t2 _- t47]

[ (+ )]tl + t371 In t2 t47] + 1 dr]
• 1 t2 + t47] tl + t3_]

_ b3b._ _6rlr2 - r_ In t4 + 1
24ST [ t4 t2

6rlr4+6r2r3--2rlr2--2rlr3 (l_t-2-21n tt_-24+1 )+ t4 t4

6r3r4--2rlr4--2r2r3--r_[_ _2(1__21n _4+1)] (C.45)+ t4 - t4 t4 t2

/ 1 [2(r 1 _- T37])(F 2 _- 7"4?])(3 -- 7]) -- (r 1 _- 7"37]) 2 ] (t 1 _- t37])

L (t2 + t471)2

BT433 -

• lI1 (t_-12-_-_47]-t-1)___37] dr]}

BT4331 = _ t2 + t47]
[(37 "2 -- 27"17"2) q- (67"27"4 -- r 2 -- 2Y1_4- 27"27"3)7]

3r_ -2_-2rlr2 In )-_2+lt4 + 6r2r4 - r_ -2t42rlr4 - 2r2r3 \(1 - t4t2

)]+ 2t_ -_ 1-- 2 V+I

_-4{57"21 _ [2 -_4t2 t2 (1 t2ln_4 _÷1 )]}

-[-(37 "2 -- 2T27" 4 -- 2r3r4), 2- 7"2. 3 ] d/]

)In _+1

(C.47)

b3bm [1 (r 2 __ 7.47])2(3_ 7]) - 2(r 1 q- 7"3?])(T2 q- r47])

24ST Jo t2_-t4_]

" {_5 t1_-_37] [ l _1-t-_371111 (_-1-[-_47] -[- 1)] } dT]t2 + t471 t2 + t471 + t371

f f_ (,2+_,)_(3- ,)- 2(_+_,)(7-2+7-_,,)b3b._ BT4331 + BT4332 +
24ST _ Jo t2+ t47l

(tl + t37])2 (t2 + t47] +1) dT]} (C.46)(t2 _- t47])2 in _ + t37]
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__ tl (2rlr2 -- 3V2

-4-

[(37"2--27"17"2)Jr-(6T2r4-7̀2--2T'lT'4-27_27"3)1]

_1(7_2 q- 2F17"4 q- 2F2T3 -- 6T2T4) --_3(2T1T'2 -- 37"7) ( _4

+

tl

_1(2T21"4Jr-27"37"4-- 3r2)Jr-t3(7"22Jr-2F1T4Jr-2/'2/"3 -- 6T27"4)
_ (c.48)

t2 + t4[t4- 2t2 6 (1+

and,

BT434 -
bab._ fl (7.2 + r4r]) 2

24ST Jo t2 + t4'/l

.{1 tl+t371 [_ tl+t371 (13 t2 + t471 t2 + t471

bab._ [BT4341 + BT4a42 + BT4a4a
24ST k

/1 (7"2 Jr-/'47])2(tl Jr-_37]) 3 (_2 Jr-_4r]

+ Jo (t2+ t_,)_ ill t_ + t_j

t2tl+t37]ln(t_ q-t47]Jr-t47] q- t37] _-1))] } d7]

(C.49)

1 [1 (7. 2 _]_ r4_])2

BT4341 -- 3 Jo t2 + t4r]
&l

r2t4-r4t21nt4_4 _'2 q-1 )]

(c.5o)
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BT4342 = -2 Jo (t2 + t4_l) 2

2t2 (t2 ÷ ta) ÷ 2t_ in ÷ t2 + t4

r_tl + 2r2r4ts ( 2t2t4 + t_ 1+ )
+-77-2 _ _ 7_ ) + t_ in _ +1

(c.5_)

Bird343= - +(t2 + t4_D3 d_j

T22t2(2t2 -_- t4) 7"2tlt3 Jr- 7"27"4 t2

2tg(t2 + t4) 2 t2(t2 + t4) 2

+ -in _+1) (c.52)

_ ItS-4t_t_+ 9_ + 12_- 6_ (_-ln _+1 )]
r4t3 t4
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• W. A. Wood and W. L. Kleb, Dittusion Characteristics of Upwind Schemes on

Unstructured Triangulations. AIAA Paper 98 2443, June 1998.

• W. A. Wood and W. L. Kleb, On Multi-dimensional Unstructured Mesh Adap-

tion. AIAA Paper 99 3254, June 1999.

253



254 APPENDIX D. PUBLICATIONS

• W. A. Wood and W. L. Kleb, 2-D/Axisymmetric Formulation of Multi-Dimen-

sional Upwind Scheme. AIAA Paper 2001 2630, June 2001.

Future publications are anticipated for the following topics: the placement of

eigenvalue limiting within the fluctuation splitting context from chapters 3 and 5;

the weak formulation of the boundary condition for the upwind fluctuation splitting

distribution scheme from chapters 3 and 5; and the adapted and unadapted capsule

results of chapter 6.



Appendix E

Navier-Stokes Solver

Adaption Code

and Mesh

The source code, written in C, for the two-dimensional and axisymmetric fluctuation

splitting and DMFDSFV Navier-Stokes solvers along with the curvature clustering

and fluctuation minimization mesh adaption schemes is included. The codes are

actually written as the text documents shown here, and are converted to executable

code by a PERL script as part of a MAKEFILE compilation.
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Appendix F

Non-linear

Solver

Conservation Law

The source code, written in FORTRAN, is presented tbr the fluctuation splitting and

DMFDSFV algorithms to solve scalar conservation law problems. Non-linear advec-

tion and linear advection-diffusion can both be treated in two dimensions. The grid

pre-processor code follows the solver code.
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